BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 24162655)

  • 1. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement.
    Bialas AR; Stevens B
    Nat Neurosci; 2013 Dec; 16(12):1773-82. PubMed ID: 24162655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From neurons to microglia, with complements.
    Derecki NC; Kipnis J
    Nat Neurosci; 2013 Dec; 16(12):1712-3. PubMed ID: 24270269
    [No Abstract]   [Full Text] [Related]  

  • 3. The classical complement cascade mediates CNS synapse elimination.
    Stevens B; Allen NJ; Vazquez LE; Howell GR; Christopherson KS; Nouri N; Micheva KD; Mehalow AK; Huberman AD; Stafford B; Sher A; Litke AM; Lambris JD; Smith SJ; John SW; Barres BA
    Cell; 2007 Dec; 131(6):1164-78. PubMed ID: 18083105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complement C1q/C3-CR3 signaling pathway mediates abnormal microglial phagocytosis of synapses in a mouse model of depression.
    Han QQ; Shen SY; Liang LF; Chen XR; Yu J
    Brain Behav Immun; 2024 Jul; 119():454-464. PubMed ID: 38642614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid Fibril-Induced Astrocytic Glutamate Transporter Disruption Contributes to Complement C1q-Mediated Microglial Pruning of Glutamatergic Synapses.
    Wu J; Bie B; Foss JF; Naguib M
    Mol Neurobiol; 2020 May; 57(5):2290-2300. PubMed ID: 32008166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV Tat causes synapse loss in a mouse model of HIV-associated neurocognitive disorder that is independent of the classical complement cascade component C1q.
    Hammond JW; Qiu WQ; Marker DF; Chamberlain JM; Greaves-Tunnell W; Bellizzi MJ; Lu SM; Gelbard HA
    Glia; 2018 Dec; 66(12):2563-2574. PubMed ID: 30325063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury.
    Silverman SM; Kim BJ; Howell GR; Miller J; John SW; Wordinger RJ; Clark AF
    Mol Neurodegener; 2016 Mar; 11():24. PubMed ID: 27008854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of immunoglobulins does not prevent C1q binding to RGC and does not alter the progression of experimental glaucoma.
    Ding QJ; Cook AC; Dumitrescu AV; Kuehn MH
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6370-7. PubMed ID: 22918632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning.
    Györffy BA; Kun J; Török G; Bulyáki É; Borhegyi Z; Gulyássy P; Kis V; Szocsics P; Micsonai A; Matkó J; Drahos L; Juhász G; Kékesi KA; Kardos J
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6303-6308. PubMed ID: 29844190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdala microglia modify neuronal plasticity via complement C1q/C3-CR3 signaling and contribute to visceral pain in a rat model.
    Yuan T; Orock A; Greenwood-Van Meerveld B
    Am J Physiol Gastrointest Liver Physiol; 2021 Jun; 320(6):G1081-G1092. PubMed ID: 33949202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia.
    Scott-Hewitt N; Perrucci F; Morini R; Erreni M; Mahoney M; Witkowska A; Carey A; Faggiani E; Schuetz LT; Mason S; Tamborini M; Bizzotto M; Passoni L; Filipello F; Jahn R; Stevens B; Matteoli M
    EMBO J; 2020 Aug; 39(16):e105380. PubMed ID: 32657463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of mGluR1 Mediates C1q-Dependent Microglial Phagocytosis of Glutamatergic Synapses in Alzheimer's Rodent Models.
    Bie B; Wu J; Foss JF; Naguib M
    Mol Neurobiol; 2019 Aug; 56(8):5568-5585. PubMed ID: 30652266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Neuronal Pentraxins as Synaptic Binding Partners of C1q and the Involvement of NP1 in Synaptic Pruning in Adult Mice.
    Kovács RÁ; Vadászi H; Bulyáki É; Török G; Tóth V; Mátyás D; Kun J; Hunyadi-Gulyás É; Fedor FZ; Csincsi Á; Medzihradszky K; Homolya L; Juhász G; Kékesi KA; Józsi M; Györffy BA; Kardos J
    Front Immunol; 2020; 11():599771. PubMed ID: 33628204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balance of pro-apoptotic transforming growth factor-beta and anti-apoptotic insulin effects in the control of cell death in the postnatal mouse retina.
    Duenker N; Valenciano AI; Franke A; Hernández-Sánchez C; Dressel R; Behrendt M; De Pablo F; Krieglstein K; de la Rosa EJ
    Eur J Neurosci; 2005 Jul; 22(1):28-38. PubMed ID: 16029193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor beta mediates apoptosis in the ganglion cell layer during all programmed cell death periods of the developing murine retina.
    Beier M; Franke A; Paunel-Görgülü AN; Scheerer N; Dünker N
    Neurosci Res; 2006 Oct; 56(2):193-203. PubMed ID: 16945440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular Dominance Plasticity in Binocular Primary Visual Cortex Does Not Require C1q.
    Welsh CA; Stephany CÉ; Sapp RW; Stevens B
    J Neurosci; 2020 Jan; 40(4):769-783. PubMed ID: 31801811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complement Targets Newborn Retinal Ganglion Cells for Phagocytic Elimination by Microglia.
    Anderson SR; Zhang J; Steele MR; Romero CO; Kautzman AG; Schafer DP; Vetter ML
    J Neurosci; 2019 Mar; 39(11):2025-2040. PubMed ID: 30647151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies.
    Dejanovic B; Huntley MA; De Mazière A; Meilandt WJ; Wu T; Srinivasan K; Jiang Z; Gandham V; Friedman BA; Ngu H; Foreman O; Carano RAD; Chih B; Klumperman J; Bakalarski C; Hanson JE; Sheng M
    Neuron; 2018 Dec; 100(6):1322-1336.e7. PubMed ID: 30392797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production.
    Fraser DA; Pisalyaput K; Tenner AJ
    J Neurochem; 2010 Feb; 112(3):733-43. PubMed ID: 19919576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina.
    Soto F; Ma X; Cecil JL; Vo BQ; Culican SM; Kerschensteiner D
    J Neurosci; 2012 Apr; 32(16):5426-39. PubMed ID: 22514306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.