These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 24162858)

  • 1. Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries.
    Zhu L; Shen Y; Sun M; Qian J; Cao Y; Ai X; Yang H
    Chem Commun (Camb); 2013 Dec; 49(97):11370-2. PubMed ID: 24162858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries.
    Zhou M; Li W; Gu T; Wang K; Cheng S; Jiang K
    Chem Commun (Camb); 2015 Oct; 51(76):14354-6. PubMed ID: 26267325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance.
    Su D; Wang C; Ahn HJ; Wang G
    Chemistry; 2013 Aug; 19(33):10884-9. PubMed ID: 23843279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries.
    Su D; Zhang J; Dou S; Wang G
    Chem Commun (Camb); 2015 Nov; 51(89):16092-5. PubMed ID: 26389862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new high-energy cathode for a Na-ion battery with ultrahigh stability.
    Park YU; Seo DH; Kwon HS; Kim B; Kim J; Kim H; Kim I; Yoo HI; Kang K
    J Am Chem Soc; 2013 Sep; 135(37):13870-8. PubMed ID: 23952799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.
    Shen W; Wang C; Liu H; Yang W
    Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study.
    Park CS; Kim H; Shakoor RA; Yang E; Lim SY; Kahraman R; Jung Y; Choi JW
    J Am Chem Soc; 2013 Feb; 135(7):2787-92. PubMed ID: 23350583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An advanced cathode for Na-ion batteries with high rate and excellent structural stability.
    Lee DH; Xu J; Meng YS
    Phys Chem Chem Phys; 2013 Mar; 15(9):3304-12. PubMed ID: 23361584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications.
    Xu G; Ding B; Nie P; Shen L; Wang J; Zhang X
    Chemistry; 2013 Sep; 19(37):12306-12. PubMed ID: 23881725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries.
    Wang Y; Yu X; Xu S; Bai J; Xiao R; Hu YS; Li H; Yang XQ; Chen L; Huang X
    Nat Commun; 2013; 4():2365. PubMed ID: 23978932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ electrochemical solid-phase extraction of anions and cations using polypyrrole and overoxidized sulfonated polypyrrole.
    Sahin Y; Ercan B; Sahin M
    Talanta; 2008 Apr; 75(2):369-75. PubMed ID: 18371893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.
    Zhu LM; Lei AW; Cao YL; Ai XP; Yang HX
    Chem Commun (Camb); 2013 Jan; 49(6):567-9. PubMed ID: 23212556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.
    Milczarek G; Inganäs O
    Science; 2012 Mar; 335(6075):1468-71. PubMed ID: 22442478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework.
    Aubrey ML; Long JR
    J Am Chem Soc; 2015 Oct; 137(42):13594-602. PubMed ID: 26436465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.