BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2416291)

  • 1. Demonstration of H2O2 production in vivo during aminopyrine metabolism and phenobarbital induction.
    Premereur N; Van den Branden C; Roels F
    Arch Int Physiol Biochim; 1985 Sep; 93(3):241-8. PubMed ID: 2416291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome P-450-dependent H2O2 production demonstrated in vivo. Influence of phenobarbital and allylisopropylacetamide.
    Premereur N; Van den Branden C; Roels F
    FEBS Lett; 1986 Apr; 199(1):19-22. PubMed ID: 3956743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the metabolism of aminopyrine, antipyrine and theophylline using monoclonal antibodies to cytochrome P-450 isozymes purified from rat liver.
    Slusher LB; Park SS; Gelboin HV; Vesell ES
    Biochem Pharmacol; 1987 Jul; 36(14):2359-67. PubMed ID: 2440440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver.
    Oshino N; Jamieson D; Chance B
    Biochem J; 1975 Jan; 146(1):53-65. PubMed ID: 167718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxisomal beta-oxidation from endogenous substrates. Demonstration through H2O2 production in the unanaesthetized mouse.
    Van den Branden C; Kerckaert I; Roels F
    Biochem J; 1984 Mar; 218(3):697-702. PubMed ID: 6372785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-induced hydrogen peroxide production in isolated rat hepatocytes.
    Boutin JA; Kass GE; Moldéus P
    Toxicology; 1989 Feb; 54(2):129-37. PubMed ID: 2922765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminopyrine metabolism by multiple forms of cytochrome P-450 from rat liver microsomes: simultaneous quantitation of four aminopyrine metabolites by high-performance liquid chromatography.
    Imaoka S; Inoue K; Funae Y
    Arch Biochem Biophys; 1988 Aug; 265(1):159-70. PubMed ID: 3415241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between the metabolism of hexobarbital and aminopyrine in vivo in rats.
    van der Graaff M; Vermeulen NP; Heij P; de Bree H; Breimer DD
    Xenobiotica; 1986 Dec; 16(12):1091-6. PubMed ID: 3798956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats.
    Jeffery EH; Mannering GJ
    Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat and rabbit.
    Heinemeyer G; Nigam S; Hildebrandt AG
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov; 314(2):201-10. PubMed ID: 7453835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of endotoxin to differentially affect cytochrome P-450 monooxygenase activities of untreated rats and animals induced with phenobarbital or 3-methylcholanthrene.
    Coto JA; Williams JF
    Int J Immunopharmacol; 1989; 11(6):623-8. PubMed ID: 2807635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the rat and guinea pig.
    Wroblewski VJ; Olson JR
    Toxicol Appl Pharmacol; 1985 Nov; 81(2):231-40. PubMed ID: 4060152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of aminopyrine N-demethylase and antipyrine hydroxylase activities in a monolayer rat primary isolated hepatocyte system.
    Kotake AN
    Biochem Pharmacol; 1981 Sep; 30(17):2473-9. PubMed ID: 21043248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase.
    Oshino N; Chance B
    Biochem J; 1977 Mar; 162(3):509-25. PubMed ID: 17386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of phenobarbital and cimetidine mediated changes in hepatic drug metabolism.
    Døssing M; Pilsgaard H; Rasmussen B; Poulsen HE
    Eur J Clin Pharmacol; 1983; 25(2):215-22. PubMed ID: 6628504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelationship between aminopyrine oxidation and gluconeogenesis in hepatocytes prepared from fructose-pretreated mice.
    Bánhegyi G; Mandl J; Antoni F; Garzó T
    Biochim Biophys Acta; 1987 Mar; 927(3):406-16. PubMed ID: 3814629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of low dose phenobarbital induction of hepatic microsomal aminopyrine N-demethylase activity in rats by cimetidine.
    Levine M; Chang T; Bellward GD
    Biochem Biophys Res Commun; 1989 Aug; 162(3):1363-9. PubMed ID: 2764937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of catalase in metabolism of hydrogen peroxide by the perfused rat heart.
    Thayer WS
    FEBS Lett; 1986 Jun; 202(1):137-40. PubMed ID: 3720947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the antioxidant (+)-cyanidanol-3 on H2O2 formation and lipid peroxidation in liver microsomes.
    Ritter J; Kahl R; Hildebrandt AG
    Res Commun Chem Pathol Pharmacol; 1985 Jan; 47(1):48-58. PubMed ID: 3983470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperoxia increases H2O2 production by brain in vivo.
    Yusa T; Beckman JS; Crapo JD; Freeman BA
    J Appl Physiol (1985); 1987 Jul; 63(1):353-8. PubMed ID: 3624137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.