BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2416319)

  • 1. Generation of photoemissive species during quinone redox cycling.
    Wefers H; Sies H
    Biochem Pharmacol; 1986 Jan; 35(1):22-4. PubMed ID: 2416319
    [No Abstract]   [Full Text] [Related]  

  • 2. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity.
    Wefers H; Sies H
    Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protection against reactive oxygen species by NAD(P)H: quinone reductase induced by the dietary antioxidant butylated hydroxyanisole (BHA). Decreased hepatic low-level chemiluminescence during quinone redox cycling.
    Wefers H; Komai T; Talalay P; Sies H
    FEBS Lett; 1984 Apr; 169(1):63-6. PubMed ID: 6201394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible role of DT-diaphorase in the bioactivation of antitumor quinones.
    Talcott RE; Rosenblum M; Levin VA
    Biochem Biophys Res Commun; 1983 Feb; 111(1):346-51. PubMed ID: 6187345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of photoemissive species by mitomycin C redox cycling in rat liver microsomes.
    Napetschnig S; Sies H
    Biochem Pharmacol; 1987 May; 36(10):1617-21. PubMed ID: 3109425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of 8-hydroxydeoxyguanosine but not initiation of carcinogenesis by redox enzyme modulations with or without menadione in rat liver.
    Denda A; Sai KM; Tang Q; Tsujiuchi T; Tsutsumi M; Amanuma T; Murata Y; Nakae D; Maruyama H; Kurokawa Y
    Carcinogenesis; 1991 Apr; 12(4):719-26. PubMed ID: 1707352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin K epoxide and quinone reductase activities. Evidence for reduction by a common enzyme.
    Gardill SL; Suttie JW
    Biochem Pharmacol; 1990 Sep; 40(5):1055-61. PubMed ID: 2390102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of dithiothreitol-dependent microsomal vitamin K quinone and vitamin K epoxide reductases inhibition of epoxide reduction by vitamin K quinone.
    Preusch PC; Suttie JW
    Biochim Biophys Acta; 1984 Mar; 798(1):141-3. PubMed ID: 6704420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenobarbital-induced cytoprotective mechanisms in menadione metabolism: the role of glutathione reductase and DT-diaphorase.
    Utley WS; Mehendale HM
    Int J Biochem; 1990; 22(9):957-67. PubMed ID: 1704318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct protective effect of NAD(P)H:quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver.
    Prochaska HJ; Talalay P; Sies H
    J Biol Chem; 1987 Feb; 262(5):1931-4. PubMed ID: 2434474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lapachol inhibition of DT-diaphorase (NAD(P)H:quinone dehydrogenase).
    Preusch PC
    Biochem Biophys Res Commun; 1986 Jun; 137(2):781-7. PubMed ID: 3089219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine, aminoimidazolecarboxamide and dicoumarol, inhibitors of NAD(P)H dehydrogenase (quinone) (DT diaphorase), prevent both the cytotoxicity and DNA interstrand crosslinking produced by 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) in Walker cells.
    Roberts JJ; Marchbank T; Kotsaki-Kovatsi VP; Boland MP; Friedlos F; Knox RJ
    Biochem Pharmacol; 1989 Nov; 38(22):4137-43. PubMed ID: 2480794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced NAD(P)H:quinone reductase activity prevents glutamate toxicity produced by oxidative stress.
    Murphy TH; De Long MJ; Coyle JT
    J Neurochem; 1991 Mar; 56(3):990-5. PubMed ID: 1704427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resorufin inhibits the in vitro metabolism and mutagenesis of benzo(a)pyrene.
    Jablonski JE; Sullivan PD
    Biochem Biophys Res Commun; 1986 Apr; 136(2):555-62. PubMed ID: 2423085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quinoneimines as substrates for quinone reductase (NAD(P)H: (quinone-acceptor)oxidoreductase) and the effect of dicumarol on their cytotoxicity.
    Powis G; See KL; Santone KS; Melder DC; Hodnett EM
    Biochem Pharmacol; 1987 Aug; 36(15):2473-9. PubMed ID: 2440444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin K-dependent carboxylation. Evidence that at least two microsomal dehydrogenases reduce vitamin K1 to support carboxylation.
    Wallin R; Hutson S
    J Biol Chem; 1982 Feb; 257(4):1583-6. PubMed ID: 6799508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin K-dependent carboxylation and vitamin K epoxidation. Evidence that the warfarin-sensitive microsomal NAD(P)H dehydrogenase reduces vitamin K1 in these reactions.
    Wallin R; Suttie JW
    Biochem J; 1981 Mar; 194(3):983-8. PubMed ID: 7306037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress.
    Lewis A; Ough M; Li L; Hinkhouse MM; Ritchie JM; Spitz DR; Cullen JJ
    Clin Cancer Res; 2004 Jul; 10(13):4550-8. PubMed ID: 15240547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.
    Wallin R; Martin LF
    J Clin Invest; 1985 Nov; 76(5):1879-84. PubMed ID: 3932474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of chromium(VI) to chromium(V) by rat liver cytosolic and microsomal fractions: is DT-diaphorase involved?
    Aiyar J; De Flora S; Wetterhahn KE
    Carcinogenesis; 1992 Jul; 13(7):1159-66. PubMed ID: 1379126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.