These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24163328)

  • 1. Validation of the activPAL activity monitor in children with hemiplegic gait patterns resultant from cerebral palsy.
    McAloon MT; Hutchins S; Twiste M; Jones R; Forchtner S
    Prosthet Orthot Int; 2014 Oct; 38(5):393-9. PubMed ID: 24163328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring physical activity in young people with cerebral palsy: validity and reliability of the ActivPAL™ monitor.
    Bania T
    Physiother Res Int; 2014 Sep; 19(3):186-92. PubMed ID: 24634324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sensitivity and specificity of an activity monitor in detecting functional activities in young people with cerebral palsy.
    Mackey AH; Hewart P; Walt SE; Stott NS
    Arch Phys Med Rehabil; 2009 Aug; 90(8):1396-401. PubMed ID: 19651274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of an activity monitor in young people with cerebral palsy gross motor function classification system level I.
    O' Donoghue D; Kennedy N
    Physiol Meas; 2014 Nov; 35(11):2307-18. PubMed ID: 25340990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonic analysis of force platform data in normal and cerebral palsy gait.
    White R; Agouris I; Fletcher E
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):508-16. PubMed ID: 15836938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The paediatric version of Wisconsin gait scale, adaptation for children with hemiplegic cerebral palsy: a prospective observational study.
    Guzik A; Drużbicki M; Kwolek A; Przysada G; Bazarnik-Mucha K; Szczepanik M; Wolan-Nieroda A; Sobolewski M
    BMC Pediatr; 2018 Sep; 18(1):301. PubMed ID: 30219044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an activity monitor for the objective measurement of free-living physical activity in children with cerebral palsy.
    Tang KT; Richardson AM; Maxwell D; Spence WD; Stansfield BW
    Arch Phys Med Rehabil; 2013 Dec; 94(12):2549-2558. PubMed ID: 23924440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a visual gait assessment scale for children with hemiplegic cerebral palsy.
    Dickens WE; Smith MF
    Gait Posture; 2006 Jan; 23(1):78-82. PubMed ID: 16311198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Index of mechanical work in gait of children with cerebral palsy.
    Dziuba AK; Tylkowska M; Jaroszczuk S
    Acta Bioeng Biomech; 2014; 16(3):77-87. PubMed ID: 25308510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic resources used in ambulation by children with spastic hemiplegic cerebral palsy: relationship to kinematics, energetics, and asymmetries.
    Fonseca ST; Holt KG; Fetters L; Saltzman E
    Phys Ther; 2004 Apr; 84(4):344-54; discussion 355-8. PubMed ID: 15049728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster analysis for the extraction of sagittal gait patterns in children with cerebral palsy.
    Toro B; Nester CJ; Farren PC
    Gait Posture; 2007 Feb; 25(2):157-65. PubMed ID: 16647260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities.
    Grant PM; Ryan CG; Tigbe WW; Granat MH
    Br J Sports Med; 2006 Dec; 40(12):992-7. PubMed ID: 16980531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait asymmetries in children with cerebral palsy: do they deteriorate with running?
    Böhm H; Döderlein L
    Gait Posture; 2012 Feb; 35(2):322-7. PubMed ID: 22055251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Children with cerebral palsy have greater stochastic features present in the variability of their gait kinematics.
    Davies BL; Kurz MJ
    Res Dev Disabil; 2013 Nov; 34(11):3648-53. PubMed ID: 24012593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring distance walked and step count in children with cerebral palsy: an evaluation of two portable activity monitors.
    Kuo YL; Culhane KM; Thomason P; Tirosh O; Baker R
    Gait Posture; 2009 Feb; 29(2):304-10. PubMed ID: 19019680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrocnemius and soleus lengths in cerebral palsy equinus gait--differences between children with and without static contracture and effects of gastrocnemius recession.
    Wren TA; Do KP; Kay RM
    J Biomech; 2004 Sep; 37(9):1321-7. PubMed ID: 15275839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Video analysis software increases the interrater reliability of video gait assessments in children with cerebral palsy.
    Borel S; Schneider P; Newman CJ
    Gait Posture; 2011 Apr; 33(4):727-9. PubMed ID: 21420864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.