These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 24163620)
1. Investigation on the aggregation behaviors and filament morphology of tau protein by a simple 90° angle light-scattering assay. Liao HL; Jiang LF; Yao TM ScientificWorldJournal; 2013; 2013():354730. PubMed ID: 24163620 [TBL] [Abstract][Full Text] [Related]
2. Aggregation analysis of the microtubule binding domain in tau protein by spectroscopic methods. Yao TM; Tomoo K; Ishida T; Hasegawa H; Sasaki M; Taniguchi T J Biochem; 2003 Jul; 134(1):91-9. PubMed ID: 12944375 [TBL] [Abstract][Full Text] [Related]
3. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation. Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135 [TBL] [Abstract][Full Text] [Related]
4. In vitro polymerization of tau protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Gamblin TC; King ME; Dawson H; Vitek MP; Kuret J; Berry RW; Binder LI Biochemistry; 2000 May; 39(20):6136-44. PubMed ID: 10821687 [TBL] [Abstract][Full Text] [Related]
5. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Jeganathan S; von Bergen M; Mandelkow EM; Mandelkow E Biochemistry; 2008 Oct; 47(40):10526-39. PubMed ID: 18783251 [TBL] [Abstract][Full Text] [Related]
6. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein. Okuyama K; Nishiura C; Mizushima F; Minoura K; Sumida M; Taniguchi T; Tomoo K; Ishida T FEBS J; 2008 Apr; 275(7):1529-1539. PubMed ID: 18312411 [TBL] [Abstract][Full Text] [Related]
7. Three-/four-repeat-dependent aggregation profile of tau microtubule-binding domain clarified by dynamic light scattering analysis. Sugino E; Nishiura C; Minoura K; In Y; Sumida M; Taniguchi T; Tomoo K; Ishida T Biochem Biophys Res Commun; 2009 Jul; 385(2):236-40. PubMed ID: 19450558 [TBL] [Abstract][Full Text] [Related]
8. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau fragment corresponding to the third repeat of microtubule-binding domain. Jiang LF; Yao TM; Zhu ZL; Wang C; Ji LN Biochim Biophys Acta; 2007 Nov; 1774(11):1414-21. PubMed ID: 17920001 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence-coupled CD conformational monitoring of filament formation of tau microtubule-binding repeat domain. Mizushima F; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T Biochem Biophys Res Commun; 2006 May; 343(3):712-8. PubMed ID: 16563344 [TBL] [Abstract][Full Text] [Related]
10. Mercury(II) promotes the in vitro aggregation of tau fragment corresponding to the second repeat of microtubule-binding domain: Coordination and conformational transition. Yang DJ; Shi S; Zheng LF; Yao TM; Ji LN Biopolymers; 2010 Dec; 93(12):1100-7. PubMed ID: 20665688 [TBL] [Abstract][Full Text] [Related]
11. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro. Rane JS; Bhaumik P; Panda D J Alzheimers Dis; 2017; 60(3):999-1014. PubMed ID: 28984591 [TBL] [Abstract][Full Text] [Related]
12. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Barghorn S; Zheng-Fischhöfer Q; Ackmann M; Biernat J; von Bergen M; Mandelkow EM; Mandelkow E Biochemistry; 2000 Sep; 39(38):11714-21. PubMed ID: 10995239 [TBL] [Abstract][Full Text] [Related]
13. Conformational transition state is responsible for assembly of microtubule-binding domain of tau protein. Hiraoka S; Yao TM; Minoura K; Tomoo K; Sumida M; Taniguchi T; Ishida T Biochem Biophys Res Commun; 2004 Mar; 315(3):659-63. PubMed ID: 14975751 [TBL] [Abstract][Full Text] [Related]
14. Pseudophosphorylation of tau protein directly modulates its aggregation kinetics. Chang E; Kim S; Schafer KN; Kuret J Biochim Biophys Acta; 2011 Feb; 1814(2):388-95. PubMed ID: 20974297 [TBL] [Abstract][Full Text] [Related]
15. Effect of DNA on filament formation of tau microtubule-binding domain: structural dependence of DNA. Hikosou R; Kurabayashi Y; Doumoto M; Hoshitoku K; Mizushima F; Minoura K; Tomoo K; Ishida T Chem Pharm Bull (Tokyo); 2007 Jul; 55(7):1030-3. PubMed ID: 17603195 [TBL] [Abstract][Full Text] [Related]
16. Analyzing Tau Aggregation with Electron Microscopy. Huseby CJ; Kuret J Methods Mol Biol; 2016; 1345():101-12. PubMed ID: 26453208 [TBL] [Abstract][Full Text] [Related]
17. A static laser light scattering assay for surfactant-induced tau fibrillization. Necula M; Kuret J Anal Biochem; 2004 Oct; 333(2):205-15. PubMed ID: 15450794 [TBL] [Abstract][Full Text] [Related]
18. Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. Congdon EE; Kim S; Bonchak J; Songrug T; Matzavinos A; Kuret J J Biol Chem; 2008 May; 283(20):13806-16. PubMed ID: 18359772 [TBL] [Abstract][Full Text] [Related]
19. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411 [TBL] [Abstract][Full Text] [Related]
20. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Barré P; Eliezer D Protein Sci; 2013 Aug; 22(8):1037-48. PubMed ID: 23740819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]