BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 24163634)

  • 1. Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications.
    Kinoshita Y; Maeda H
    ScientificWorldJournal; 2013; 2013():863157. PubMed ID: 24163634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region.
    Bello SA; Cruz-Lebrón J; Rodríguez-Rivera OA; Nicolau E
    ACS Appl Bio Mater; 2023 Nov; 6(11):4465-4503. PubMed ID: 37877225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taking the endochondral route to craniomaxillofacial bone regeneration: A logical approach?
    Kruijt Spanjer EC; Bittermann GKP; van Hooijdonk IEM; Rosenberg AJWP; Gawlitta D
    J Craniomaxillofac Surg; 2017 Jul; 45(7):1099-1106. PubMed ID: 28479032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H
    Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current and emerging basic science concepts in bone biology: implications in craniofacial surgery.
    Oppenheimer AJ; Mesa J; Buchman SR
    J Craniofac Surg; 2012 Jan; 23(1):30-6. PubMed ID: 22337370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering advances in spine surgery.
    Makhni MC; Caldwell JM; Saifi C; Fischer CR; Lehman RA; Lenke LG; Lee FY
    Regen Med; 2016 Mar; 11(2):211-22. PubMed ID: 26877156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.
    Park HJ; Yu SJ; Yang K; Jin Y; Cho AN; Kim J; Lee B; Yang HS; Im SG; Cho SW
    Biomaterials; 2014 Dec; 35(37):9811-9823. PubMed ID: 25241158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis.
    Shanbhag S; Pandis N; Mustafa K; Nyengaard JR; Stavropoulos A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e336-e349. PubMed ID: 28095650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional macroporous materials for tissue engineering of craniofacial bone.
    Shakya AK; Kandalam U
    Br J Oral Maxillofac Surg; 2017 Nov; 55(9):875-891. PubMed ID: 29056355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Tissue-Engineered Bone Substitutes for Maxillofacial and Craniofacial Repair: The Potential of Cell Sheet Technologies.
    Kawecki F; Clafshenkel WP; Fortin M; Auger FA; Fradette J
    Adv Healthc Mater; 2018 Mar; 7(6):e1700919. PubMed ID: 29280323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid prototyping technology and its application in bone tissue engineering.
    Yuan B; Zhou SY; Chen XS
    J Zhejiang Univ Sci B; 2017 Apr.; 18(4):303-315. PubMed ID: 28378568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
    Temple JP; Hutton DL; Hung BP; Huri PY; Cook CA; Kondragunta R; Jia X; Grayson WL
    J Biomed Mater Res A; 2014 Dec; 102(12):4317-25. PubMed ID: 24510413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering.
    Boccaccio A; Ballini A; Pappalettere C; Tullo D; Cantore S; Desiate A
    Int J Biol Sci; 2011 Jan; 7(1):112-32. PubMed ID: 21278921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer scaffolds in orthopaedic tissue engineering.
    Atesok K; Doral MN; Karlsson J; Egol KA; Jazrawi LM; Coelho PG; Martinez A; Matsumoto T; Owens BD; Ochi M; Hurwitz SR; Atala A; Fu FH; Lu HH; Rodeo SA
    Knee Surg Sports Traumatol Arthrosc; 2016 Jul; 24(7):2365-73. PubMed ID: 25466277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review.
    Song W; Bo X; Ma X; Hou K; Li D; Geng W; Zeng J
    J Stomatol Oral Maxillofac Surg; 2022 Nov; 123(6):e650-e659. PubMed ID: 35691558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential use of craniosynostotic osteoprogenitors and bioactive scaffolds for bone engineering.
    Santos-Ruiz L; Mowatt DJ; Marguerie A; Tukiainen D; Kellomäki M; Törmälä P; Suokas E; Arstila H; Ashammakhi N; Ferretti P
    J Tissue Eng Regen Med; 2007; 1(3):199-210. PubMed ID: 18038412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.