These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24164246)

  • 1. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.
    Hilal-Alnaqbi A; Mourad AH; Yousef BF
    Biotechnol Appl Biochem; 2014; 61(3):304-15. PubMed ID: 24164246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation and theoretical modeling of oxygen transfer rate for the newly developed hollow fiber bioreactor with three compartments.
    Hilal-Alnaqbi A; Mourad AH; Yousef BF; Gaylor JD
    Biomed Mater Eng; 2013; 23(5):387-403. PubMed ID: 23988710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen consumption in a hollow fiber bioartificial liver--revisited.
    Patzer JF
    Artif Organs; 2004 Jan; 28(1):83-98. PubMed ID: 14720293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen transfer in a diffusion-limited hollow fiber bioartificial liver.
    Hay PD; Veitch AR; Smith MD; Cousins RB; Gaylor JD
    Artif Organs; 2000 Apr; 24(4):278-88. PubMed ID: 10816201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen transfer in a convection-enhanced hollow fiber bioartificial liver.
    Hay PD; Veitch AR; Gaylor JD
    Artif Organs; 2001 Feb; 25(2):119-30. PubMed ID: 11251477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of polypropylene hollow-fiber prototype bioreactor for bioartificial liver.
    Palakkan AA; Raj DK; Rojan J; Raj R G S; Anil Kumar PR; Muraleedharan CV; Kumary TV
    Tissue Eng Part A; 2013 May; 19(9-10):1056-66. PubMed ID: 23240809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical method to improve and optimize the design of bioartificial livers.
    Davidson AJ; Ellis MJ; Chaudhuri JB
    Biotechnol Bioeng; 2010 Aug; 106(6):980-8. PubMed ID: 20506230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixtures of hemoglobin-based oxygen carriers and perfluorocarbons exhibit a synergistic effect in oxygenating hepatic hollow fiber bioreactors.
    Chen G; Palmer AF
    Biotechnol Bioeng; 2010 Feb; 105(3):534-42. PubMed ID: 19816963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical analysis of tubular membrane aeration for Mammalian cell bioreactors.
    Qi HN; Goudar CT; Michaels JD; Henzler HJ; Jovanovic GN; Konstantinov KB
    Biotechnol Prog; 2003; 19(4):1183-9. PubMed ID: 12892480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of flow configuration and membrane characteristics on membrane fouling in a novel multicoaxial hollow-fiber bioartificial liver.
    MacDonald JM; Wolfe SP; Roy-Chowdhury I; Kubota H; Reid LM
    Ann N Y Acad Sci; 2001 Nov; 944():334-43. PubMed ID: 11797682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor.
    Sullivan JP; Harris DR; Palmer AF
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(4):386-402. PubMed ID: 18649173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions.
    De Bartolo L; Jarosch-Von Schweder G; Haverich A; Bader A
    Biotechnol Prog; 2000; 16(1):102-8. PubMed ID: 10662497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers.
    Sullivan JP; Gordon JE; Bou-Akl T; Matthew HW; Palmer AF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(6):585-606. PubMed ID: 18097786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfluorocarbon facilitated O(2) transport in a hepatic hollow fiber bioreactor.
    Chen G; Palmer AF
    Biotechnol Prog; 2009; 25(5):1317-21. PubMed ID: 19565662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
    Garcia-Ochoa F; Gomez E
    Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convective flow through a hollow fiber bioartificial liver.
    Moussy Y
    Artif Organs; 2003 Nov; 27(11):1041-9. PubMed ID: 14616523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor.
    Sullivan JP; Gordon JE; Palmer AF
    Biotechnol Bioeng; 2006 Feb; 93(2):306-17. PubMed ID: 16161160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical model of fluid flow and oxygen transport in a radial-flow microchannel containing hepatocytes.
    Ledezma GA; Folch A; Bhatia SN; Balis UJ; Yarmush ML; Toner M
    J Biomech Eng; 1999 Feb; 121(1):58-64. PubMed ID: 10080090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.
    Chen G; Palmer AF
    Biotechnol Bioeng; 2009 Apr; 102(6):1603-12. PubMed ID: 19072844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to evaluate the isothermal effectiveness factor for dynamic oxygen into mycelial pellets in submerged cultures.
    Silva EM; Gutierrez GF; Dendooven L; Jiménez I H; Ochoa-Tapia JA
    Biotechnol Prog; 2001; 17(1):95-103. PubMed ID: 11170486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.