These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 24164359)
1. Sign epistasis limits evolutionary trade-offs at the confluence of single- and multi-carbon metabolism in Methylobacterium extorquens AM1. Carroll SM; Lee MC; Marx CJ Evolution; 2014 Mar; 68(3):760-71. PubMed ID: 24164359 [TBL] [Abstract][Full Text] [Related]
2. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. Marx CJ; Laukel M; Vorholt JA; Lidstrom ME J Bacteriol; 2003 Dec; 185(24):7169-75. PubMed ID: 14645277 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric, bimodal trade-offs during adaptation of Methylobacterium to distinct growth substrates. Lee MC; Chou HH; Marx CJ Evolution; 2009 Nov; 63(11):2816-30. PubMed ID: 19545267 [TBL] [Abstract][Full Text] [Related]
4. Biochemical properties and crystal structure of formate-tetrahydrofolate ligase from Methylobacterium extorquens CM4. Kim S; Lee SH; Seo H; Kim KJ Biochem Biophys Res Commun; 2020 Jul; 528(3):426-431. PubMed ID: 32505353 [TBL] [Abstract][Full Text] [Related]
5. Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1. Nayak DD; Marx CJ PLoS One; 2014; 9(9):e107887. PubMed ID: 25232997 [TBL] [Abstract][Full Text] [Related]
6. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. Fu Y; Beck DA; Lidstrom ME BMC Microbiol; 2016 Jul; 16(1):156. PubMed ID: 27435978 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction of C(3) and C(4) metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. Van Dien SJ; Okubo Y; Hough MT; Korotkova N; Taitano T; Lidstrom ME Microbiology (Reading); 2003 Mar; 149(Pt 3):601-609. PubMed ID: 12634329 [TBL] [Abstract][Full Text] [Related]
8. Co-consumption of methanol and succinate by Methylobacterium extorquens AM1. Peyraud R; Kiefer P; Christen P; Portais JC; Vorholt JA PLoS One; 2012; 7(11):e48271. PubMed ID: 23133625 [TBL] [Abstract][Full Text] [Related]
9. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425 [TBL] [Abstract][Full Text] [Related]
10. Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Guo X; Lidstrom ME Biotechnol Bioeng; 2008 Mar; 99(4):929-40. PubMed ID: 17879968 [TBL] [Abstract][Full Text] [Related]
11. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. Skovran E; Crowther GJ; Guo X; Yang S; Lidstrom ME PLoS One; 2010 Nov; 5(11):e14091. PubMed ID: 21124828 [TBL] [Abstract][Full Text] [Related]
12. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. Nieto Penalver CG; Morin D; Cantet F; Saurel O; Milon A; Vorholt JA FEBS Lett; 2006 Jan; 580(2):561-7. PubMed ID: 16412429 [TBL] [Abstract][Full Text] [Related]
13. Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Schmidt S; Christen P; Kiefer P; Vorholt JA Microbiology (Reading); 2010 Aug; 156(Pt 8):2575-2586. PubMed ID: 20447995 [TBL] [Abstract][Full Text] [Related]
14. Implementation of microarrays for Methylobacterium extorquens AM1. Okubo Y; Skovran E; Guo X; Sivam D; Lidstrom ME OMICS; 2007; 11(4):325-40. PubMed ID: 18092906 [TBL] [Abstract][Full Text] [Related]
15. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Van Dien SJ; Strovas T; Lidstrom ME Biotechnol Bioeng; 2003 Oct; 84(1):45-55. PubMed ID: 12910542 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Bosch G; Skovran E; Xia Q; Wang T; Taub F; Miller JA; Lidstrom ME; Hackett M Proteomics; 2008 Sep; 8(17):3494-505. PubMed ID: 18686303 [TBL] [Abstract][Full Text] [Related]
17. Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. Chistoserdova L; Laukel M; Portais JC; Vorholt JA; Lidstrom ME J Bacteriol; 2004 Jan; 186(1):22-8. PubMed ID: 14679220 [TBL] [Abstract][Full Text] [Related]
18. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Yang YM; Chen WJ; Yang J; Zhou YM; Hu B; Zhang M; Zhu LP; Wang GY; Yang S Microb Cell Fact; 2017 Oct; 16(1):179. PubMed ID: 29084554 [TBL] [Abstract][Full Text] [Related]
19. Methylobacterium extorquens: methylotrophy and biotechnological applications. Ochsner AM; Sonntag F; Buchhaupt M; Schrader J; Vorholt JA Appl Microbiol Biotechnol; 2015 Jan; 99(2):517-34. PubMed ID: 25432674 [TBL] [Abstract][Full Text] [Related]
20. Large-Effect Beneficial Synonymous Mutations Mediate Rapid and Parallel Adaptation in a Bacterium. Agashe D; Sane M; Phalnikar K; Diwan GD; Habibullah A; Martinez-Gomez NC; Sahasrabuddhe V; Polachek W; Wang J; Chubiz LM; Marx CJ Mol Biol Evol; 2016 Jun; 33(6):1542-53. PubMed ID: 26908584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]