BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24164359)

  • 41. Breeding of Methanol-Tolerant Methylobacterium extorquens AM1 by Atmospheric and Room Temperature Plasma Mutagenesis Combined With Adaptive Laboratory Evolution.
    Cui LY; Wang SS; Guan CG; Liang WF; Xue ZL; Zhang C; Xing XH
    Biotechnol J; 2018 Jun; 13(6):e1700679. PubMed ID: 29729127
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of pleiotropy vs signaller-receiver gene epistasis in life history trade-offs: dissecting the genomic architecture of organismal design in social systems.
    Sinervo B; Clobert J; Miles DB; McAdam A; Lancaster LT
    Heredity (Edinb); 2008 Sep; 101(3):197-211. PubMed ID: 18685573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.
    Vorholt JA; Marx CJ; Lidstrom ME; Thauer RK
    J Bacteriol; 2000 Dec; 182(23):6645-50. PubMed ID: 11073907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.
    Schneider K; Skovran E; Vorholt JA
    J Bacteriol; 2012 Jun; 194(12):3144-55. PubMed ID: 22493020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of 2-Hydroxyisobutyric Acid from Methanol by Methylobacterium extorquens AM1 Expressing (R)-3-Hydroxybutyryl Coenzyme A-Isomerizing Enzymes.
    Rohde MT; Tischer S; Harms H; Rohwerder T
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive discovery of 13C labeled metabolites in the bacterium Methylobacterium extorquens AM1 using gas chromatography-mass spectrometry.
    Yang S; Hoggard JC; Lidstrom ME; Synovec RE
    J Chromatogr A; 2013 Nov; 1317():175-85. PubMed ID: 24007683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations.
    Chou HH; Delaney NF; Draghi JA; Marx CJ
    PLoS Genet; 2014 Feb; 10(2):e1004149. PubMed ID: 24586190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1.
    Peyraud R; Schneider K; Kiefer P; Massou S; Vorholt JA; Portais JC
    BMC Syst Biol; 2011 Nov; 5():189. PubMed ID: 22074569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch.
    Marx CJ; Lidstrom ME
    Microbiology (Reading); 2004 Jan; 150(Pt 1):9-19. PubMed ID: 14702393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of an upstream regulatory sequence that mediates the transcription of mox genes in Methylobacterium extorquens AM1.
    Zhang M; FitzGerald KA; Lidstrom ME
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3723-3728. PubMed ID: 16272393
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1.
    Martinez-Gomez NC; Good NM; Lidstrom ME
    J Bacteriol; 2015 Jun; 197(12):2020-6. PubMed ID: 25845846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The population genetics of ecological specialization in evolving Escherichia coli populations.
    Cooper VS; Lenski RE
    Nature; 2000 Oct; 407(6805):736-9. PubMed ID: 11048718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of an optimized medium, strain and high-throughput culturing methods for Methylobacterium extorquens.
    Delaney NF; Kaczmarek ME; Ward LM; Swanson PK; Lee MC; Marx CJ
    PLoS One; 2013; 8(4):e62957. PubMed ID: 23646164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.
    Roselli S; Nadalig T; Vuilleumier S; Bringel F
    PLoS One; 2013; 8(4):e56598. PubMed ID: 23593113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolution of Fitness Trade-Offs in Locally Adapted Populations of Pseudomonas fluorescens.
    Schick A; Bailey SF; Kassen R
    Am Nat; 2015 Oct; 186 Suppl 1():S48-59. PubMed ID: 26656216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.
    Zhu WL; Cui JY; Cui LY; Liang WF; Yang S; Zhang C; Xing XH
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2171-82. PubMed ID: 26521242
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy.
    Ochsner AM; Christen M; Hemmerle L; Peyraud R; Christen B; Vorholt JA
    Curr Biol; 2017 Sep; 27(17):2579-2588.e6. PubMed ID: 28823675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assimilation of formic acid and CO
    Bang J; Lee SY
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9271-E9279. PubMed ID: 30224468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1.
    Crowther GJ; Kosály G; Lidstrom ME
    J Bacteriol; 2008 Jul; 190(14):5057-62. PubMed ID: 18502865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1.
    Yoon J; Bae J; Kang S; Cho BK; Oh MK
    Bioresour Technol; 2022 Jun; 353():127127. PubMed ID: 35398538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.