These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24164550)

  • 1. Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping.
    Yang C; Wang Z; Lin T; Yin H; Lü X; Wan D; Xu T; Zheng C; Lin J; Huang F; Xie X; Jiang M
    J Am Chem Soc; 2013 Nov; 135(47):17831-8. PubMed ID: 24164550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting.
    Yang JS; Liao WP; Wu JJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7425-31. PubMed ID: 23844887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis.
    Zhu G; Shan Y; Lin T; Zhao W; Xu J; Tian Z; Zhang H; Zheng C; Huang F
    Nanoscale; 2016 Feb; 8(8):4705-12. PubMed ID: 26858035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TiO2 nanotube arrays modified with Cr-doped SrTiO3 nanocubes for highly efficient hydrogen evolution under visible light.
    Jiao Z; Zhang Y; Chen T; Dong Q; Lu G; Bi Y
    Chemistry; 2014 Feb; 20(9):2654-62. PubMed ID: 24482071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A TiO
    Schipper DE; Zhao Z; Leitner AP; Xie L; Qin F; Alam MK; Chen S; Wang D; Ren Z; Wang Z; Bao J; Whitmire KH
    ACS Nano; 2017 Apr; 11(4):4051-4059. PubMed ID: 28333437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorine-doped porous single-crystal rutile TiO2 nanorods for enhancing photoelectrochemical water splitting.
    Fang WQ; Huo Z; Liu P; Wang XL; Zhang M; Jia Y; Zhang H; Zhao H; Yang HG; Yao X
    Chemistry; 2014 Sep; 20(36):11439-44. PubMed ID: 25059762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity.
    Zhao W; Zhao W; Zhu G; Lin T; Xu F; Huang F
    Dalton Trans; 2016 Mar; 45(9):3888-94. PubMed ID: 26906245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile One-Step Route for the Development of in Situ Cocatalyst-Modified Ti
    Kumar R; Govindarajan S; Siri Kiran Janardhana RK; Rao TN; Joshi SV; Anandan S
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27642-27653. PubMed ID: 27667775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning.
    Yin H; Lin T; Yang C; Wang Z; Zhu G; Xu T; Xie X; Huang F; Jiang M
    Chemistry; 2013 Sep; 19(40):13313-6. PubMed ID: 24014465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion.
    Ding Y; Nagpal P
    Nanoscale; 2016 Oct; 8(40):17496-17505. PubMed ID: 27714097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Ti(1-x)S(x)O(2-y)N(y) heterojunctions for efficient visible-light-induced photocatalysis.
    Etacheri V; Seery MK; Hinder SJ; Pillai SC
    Inorg Chem; 2012 Jul; 51(13):7164-73. PubMed ID: 22690945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO
    Ding L; Yang S; Liang Z; Qian X; Chen X; Cui H; Tian J
    J Colloid Interface Sci; 2020 May; 567():181-189. PubMed ID: 32045740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-Shell Vanadium Modified Titania@β-In2S3 Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity.
    Mumtaz A; Mohamed NM; Mazhar M; Ehsan MA; Mohamed Saheed MS
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9037-49. PubMed ID: 26852779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity.
    Xiang Q; Yu J; Jaroniec M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4853-61. PubMed ID: 21103562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework.
    Liu G; Chen Z; Dong C; Zhao Y; Li F; Lu GQ; Cheng HM
    J Phys Chem B; 2006 Oct; 110(42):20823-8. PubMed ID: 17048893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production.
    Li L; Yan J; Wang T; Zhao ZJ; Zhang J; Gong J; Guan N
    Nat Commun; 2015 Jan; 6():5881. PubMed ID: 25562287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balsam-pear-like rutile/anatase core/shell titania nanorod arrays for photoelectrochemical water splitting.
    Wen W; Yao JC; Gu YJ; Sun TL; Tian H; Zhou QL; Wu JM
    Nanotechnology; 2017 Nov; 28(46):465602. PubMed ID: 29053476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks.
    Kim K; Thiyagarajan P; Ahn HJ; Kim SI; Jang JH
    Nanoscale; 2013 Jul; 5(14):6254-60. PubMed ID: 23733045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.