These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24164591)

  • 1. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis.
    Jagadeeswaran G; Li YF; Sunkar R
    Plant J; 2014 Jan; 77(1):85-96. PubMed ID: 24164591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana.
    Liang G; Yang F; Yu D
    Plant J; 2010 Jun; 62(6):1046-57. PubMed ID: 20374528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis.
    Kawashima CG; Matthewman CA; Huang S; Lee BR; Yoshimoto N; Koprivova A; Rubio-Somoza I; Todesco M; Rathjen T; Saito K; Takahashi H; Dalmay T; Kopriva S
    Plant J; 2011 Jun; 66(5):863-76. PubMed ID: 21401744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.
    Reichheld JP; Khafif M; Riondet C; Droux M; Bonnard G; Meyer Y
    Plant Cell; 2007 Jun; 19(6):1851-65. PubMed ID: 17586656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal regulation among miR395, APS and SULTR2;1 in Arabidopsis thaliana.
    Liang G; Yu D
    Plant Signal Behav; 2010 Oct; 5(10):1257-9. PubMed ID: 20935495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis.
    Matthewman CA; Kawashima CG; Húska D; Csorba T; Dalmay T; Kopriva S
    FEBS Lett; 2012 Sep; 586(19):3242-8. PubMed ID: 22771787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound.
    Lappartient AG; Vidmar JJ; Leustek T; Glass AD; Touraine B
    Plant J; 1999 Apr; 18(1):89-95. PubMed ID: 10341446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis.
    Yuan N; Yuan S; Li Z; Li D; Hu Q; Luo H
    Sci Rep; 2016 Jun; 6():28791. PubMed ID: 27350219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR398 and miR395 are involved in response to SO
    Li L; Yi H; Xue M; Yi M
    Ecotoxicology; 2017 Nov; 26(9):1181-1187. PubMed ID: 28819808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient- and other stress-responsive microRNAs in plants: Role for thiol-based redox signaling.
    Panda SK; Sunkar R
    Plant Signal Behav; 2015; 10(4):e1010916. PubMed ID: 25912823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of ascorbate- and salicylate-responsive miRNAs and verification of the spectral control of miR395 in Arabidopsis.
    Székely A; Gulyás Z; Balogh E; Payet R; Dalmay T; Kocsy G; Kalapos B
    Physiol Plant; 2023; 175(6):e14070. PubMed ID: 38148221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types.
    Kawashima CG; Yoshimoto N; Maruyama-Nakashita A; Tsuchiya YN; Saito K; Takahashi H; Dalmay T
    Plant J; 2009 Jan; 57(2):313-21. PubMed ID: 18801012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of sulfate concentration by miR395-targeted
    Ai Q; Liang G; Zhang H; Yu D
    Plant Divers; 2016 Apr; 38(2):92-100. PubMed ID: 30159453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C.
    Bashandy T; Taconnat L; Renou JP; Meyer Y; Reichheld JP
    Mol Plant; 2009 Mar; 2(2):249-58. PubMed ID: 19825611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis.
    Correa-Aragunde N; Cejudo FJ; Lamattina L
    Ann Bot; 2015 Sep; 116(4):695-702. PubMed ID: 26229066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions.
    Kim JY; Lee HJ; Jung HJ; Maruyama K; Suzuki N; Kang H
    Planta; 2010 Nov; 232(6):1447-54. PubMed ID: 20839006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought.
    Cha JY; Kim JY; Jung IJ; Kim MR; Melencion A; Alam SS; Yun DJ; Lee SY; Kim MG; Kim WY
    Plant Physiol Biochem; 2014 Jul; 80():184-91. PubMed ID: 24792388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana.
    Chen Z; Hu L; Han N; Hu J; Yang Y; Xiang T; Zhang X; Wang L
    Plant Cell Physiol; 2015 Jan; 56(1):73-83. PubMed ID: 25336111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana.
    Cao MJ; Wang Z; Zhao Q; Mao JL; Speiser A; Wirtz M; Hell R; Zhu JK; Xiang CB
    Plant J; 2014 Feb; 77(4):604-15. PubMed ID: 24330104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur Partitioning between Glutathione and Protein Synthesis Determines Plant Growth.
    Speiser A; Silbermann M; Dong Y; Haberland S; Uslu VV; Wang S; Bangash SAK; Reichelt M; Meyer AJ; Wirtz M; Hell R
    Plant Physiol; 2018 Jul; 177(3):927-937. PubMed ID: 29752309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.