BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24164690)

  • 1. Reaction mechanism of monoamine oxidase from QM/MM calculations.
    Abad E; Zenn RK; Kästner J
    J Phys Chem B; 2013 Nov; 117(46):14238-46. PubMed ID: 24164690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the environment on the oxidative deamination of p-substituted benzylamines in monoamine oxidase.
    Zenn RK; Abad E; Kästner J
    J Phys Chem B; 2015 Mar; 119(9):3678-86. PubMed ID: 25671411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study on the amine-oxidation mechanism of monoamine oxidase: insight into the polar nucleophilic mechanism.
    Erdem SS; Karahan O; Yildiz I; Yelekçi K
    Org Biomol Chem; 2006 Feb; 4(4):646-58. PubMed ID: 16467939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path Integral Calculation of the Hydrogen/Deuterium Kinetic Isotope Effect in Monoamine Oxidase A-Catalyzed Decomposition of Benzylamine.
    Brela MZ; Prah A; Boczar M; Stare J; Mavri J
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31795294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative computational investigation on the proton and hydride transfer mechanisms of monoamine oxidase using model molecules.
    Atalay VE; Erdem SS
    Comput Biol Chem; 2013 Dec; 47():181-91. PubMed ID: 24121676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationships in the oxidation of benzylamine analogues by bovine liver mitochondrial monoamine oxidase B.
    Walker MC; Edmondson DE
    Biochemistry; 1994 Jun; 33(23):7088-98. PubMed ID: 8003474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ONIOM calculations on serotonin degradation by monoamine oxidase B: insight into the oxidation mechanism and covalent reversible inhibition.
    Cakir K; Erdem SS; Atalay VE
    Org Biomol Chem; 2016 Oct; 14(39):9239-9252. PubMed ID: 27605388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen kinetic isotope effects for the monoamine oxidase B-catalyzed oxidation of benzylamine and (1,1-(2)H2)benzylamine: nitrogen rehybridization and CH bond cleavage are not concerted.
    MacMillar S; Edmondson DE; Matsson O
    J Am Chem Soc; 2011 Aug; 133(32):12319-21. PubMed ID: 21786798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Monoamine Oxidase B Catalytic Mechanisms by Means of the Quantum Chemical Cluster Approach.
    Zapata-Torres G; Fierro A; Barriga-González G; Salgado JC; Celis-Barros C
    J Chem Inf Model; 2015 Jul; 55(7):1349-60. PubMed ID: 26091526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminium cation radical mechanism proposed for monoamine oxidase B catalysis: are there alternatives?
    Edmondson DE
    Xenobiotica; 1995 Jul; 25(7):735-53. PubMed ID: 7483670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B evaluated by empirical valence bond simulation.
    Oanca G; Stare J; Mavri J
    Proteins; 2017 Dec; 85(12):2170-2178. PubMed ID: 28836294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase.
    Bhattacharyya S; Stankovich MT; Truhlar DG; Gao J
    J Phys Chem A; 2007 Jul; 111(26):5729-42. PubMed ID: 17567113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations.
    Akyüz MA; Erdem SS
    J Neural Transm (Vienna); 2013 Jun; 120(6):937-45. PubMed ID: 23619993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the covalently bound anionic flavin radical in monoamine oxidase a by electron paramagnetic resonance.
    Kay CW; El Mkami H; Molla G; Pollegioni L; Ramsay RR
    J Am Chem Soc; 2007 Dec; 129(51):16091-7. PubMed ID: 18044898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine.
    Mavri J; Matute RA; Chu ZT; Vianello R
    J Phys Chem B; 2016 Apr; 120(14):3488-92. PubMed ID: 27010708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in activity and inhibition with pH: the protonated amine is the substrate for monoamine oxidase, but uncharged inhibitors bind better.
    Jones TZ; Balsa D; Unzeta M; Ramsay RR
    J Neural Transm (Vienna); 2007; 114(6):707-12. PubMed ID: 17401535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of surface cysteine 374 to alanine in monoamine oxidase A alters substrate turnover and inactivation by cyclopropylamines.
    Vintém AP; Price NT; Silverman RB; Ramsay RR
    Bioorg Med Chem; 2005 May; 13(10):3487-95. PubMed ID: 15848762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reaction mechanism of sarcosine oxidase elucidated using FMO and QM/MM methods.
    Abe Y; Shoji M; Nishiya Y; Aiba H; Kishimoto T; Kitaura K
    Phys Chem Chem Phys; 2017 Apr; 19(15):9811-9822. PubMed ID: 28374027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.