These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24165121)

  • 1. Stabilization of the ADP/metaphosphate intermediate during ATP hydrolysis in pre-power stroke myosin: quantitative anatomy of an enzyme.
    Kiani FA; Fischer S
    J Biol Chem; 2013 Dec; 288(49):35569-80. PubMed ID: 24165121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic strategy used by the myosin motor to hydrolyze ATP.
    Kiani FA; Fischer S
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2947-56. PubMed ID: 25006262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes.
    Kiani FA; Fischer S
    BMC Biochem; 2016 Jun; 17(1):12. PubMed ID: 27974044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors.
    Kiani FA; Fischer S
    Phys Chem Chem Phys; 2016 Jul; 18(30):20219-33. PubMed ID: 27296627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling.
    Grigorenko BL; Rogov AV; Topol IA; Burt SK; Martinez HM; Nemukhin AV
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7057-61. PubMed ID: 17438284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical studies of the ATP hydrolysis mechanism of myosin.
    Okimoto N; Yamanaka K; Ueno J; Hata M; Hoshino T; Tsuda M
    Biophys J; 2001 Nov; 81(5):2786-94. PubMed ID: 11606291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.
    Hassan HA; Rani S; Fatima T; Kiani FA; Fischer S
    Biophys Chem; 2017 Nov; 230():27-35. PubMed ID: 28941815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
    Koppole S; Smith JC; Fischer S
    J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimum energy reaction profiles for ATP hydrolysis in myosin.
    Grigorenko BL; Kaliman IA; Nemukhin AV
    J Mol Graph Model; 2011 Nov; 31():1-4. PubMed ID: 21839658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the chemomechanical coupling of the myosin motor from simulation of its ATP hydrolysis mechanism.
    Schwarzl SM; Smith JC; Fischer S
    Biochemistry; 2006 May; 45(18):5830-47. PubMed ID: 16669626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes.
    Peyser YM; Ben-Hur M; Werber MM; Muhlrad A
    Biochemistry; 1996 Apr; 35(14):4409-16. PubMed ID: 8605190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic mechanism of Nicotiana tabacum myosin-11 defines a new type of a processive motor.
    Diensthuber RP; Tominaga M; Preller M; Hartmann FK; Orii H; Chizhov I; Oiwa K; Tsiavaliaris G
    FASEB J; 2015 Jan; 29(1):81-94. PubMed ID: 25326536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mutations in the gamma-phosphate binding site of myosin on its motor function.
    Li XD; Rhodes TE; Ikebe R; Kambara T; White HD; Ikebe M
    J Biol Chem; 1998 Oct; 273(42):27404-11. PubMed ID: 9765269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of the binding of Myosin*ADP*Pi to actin in permeabilized rabbit psoas muscle.
    Xu S; Gu J; Belknap B; White H; Yu LC
    Biophys J; 2006 Nov; 91(9):3370-82. PubMed ID: 16905611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin.
    Shih WM; Gryczynski Z; Lakowicz JR; Spudich JA
    Cell; 2000 Sep; 102(5):683-94. PubMed ID: 11007486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperativity in the motor activities of the ATP-fueled molecular motors.
    Liu MS; Todd BD; Sadus RJ
    Biochim Biophys Acta; 2005 Sep; 1752(2):111-23. PubMed ID: 16140597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A myosin II mutation uncouples ATPase activity from motility and shortens step size.
    Murphy CT; Rock RS; Spudich JA
    Nat Cell Biol; 2001 Mar; 3(3):311-5. PubMed ID: 11231583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic pressure probe of actin-myosin hydration changes during ATP hydrolysis.
    Highsmith S; Duignan K; Cooke R; Cohen J
    Biophys J; 1996 Jun; 70(6):2830-7. PubMed ID: 8744320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate release coupled to rotary motion of F1-ATPase.
    Okazaki K; Hummer G
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16468-73. PubMed ID: 24062450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human myosin III is a motor having an extremely high affinity for actin.
    Kambara T; Komaba S; Ikebe M
    J Biol Chem; 2006 Dec; 281(49):37291-301. PubMed ID: 17012748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.