BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24165168)

  • 1. Pudendal afferents mapping in posterior sacral rhizotomies.
    Ogiwara H; Morota N
    Neurosurgery; 2014 Feb; 74(2):171-5. PubMed ID: 24165168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preservation of pudendal afferents in sacral rhizotomies.
    Huang JC; Deletis V; Vodusek DB; Abbott R
    Neurosurgery; 1997 Aug; 41(2):411-5. PubMed ID: 9257309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders.
    Deletis V; Vodusek DB; Abbott R; Epstein FJ; Turndorf H
    Neurosurgery; 1992 Jan; 30(1):72-5. PubMed ID: 1738459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inclusion of the S2 dorsal rootlets in functional posterior rhizotomy for spasticity in children with cerebral palsy.
    Lang FF; Deletis V; Cohen HW; Velasquez L; Abbott R
    Neurosurgery; 1994 May; 34(5):847-53; discussion 853. PubMed ID: 8052381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pudendal mapping of S1 rootlets in a functional posterior rhizotomy: when an S1 posterior root shows a high pudendal dorsal action potential-a technical note.
    Morota N
    Childs Nerv Syst; 2020 Sep; 36(9):1971-1975. PubMed ID: 32591876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of external anal sphincter EMG recording for intraoperative neuromonitoring of the sacral roots-a prospective study in dorsal rhizotomy.
    Sindou M; Joud A; Georgoulis G
    Acta Neurochir (Wien); 2021 Feb; 163(2):479-487. PubMed ID: 33064201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle responses to radicular stimulation during lumbo-sacral dorsal rhizotomy for spastic diplegia: Insights to myotome innervation.
    Georgoulis G; Sindou M
    Clin Neurophysiol; 2020 May; 131(5):1075-1086. PubMed ID: 32199396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual spasticity after selective posterior rhizotomy.
    Morota N; Abbott R; Kofler M; Epstein FJ; Cohen H
    Childs Nerv Syst; 1995 Mar; 11(3):161-5. PubMed ID: 7773976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of specificity in electrophysiological identification of lower sacral roots during selective dorsal rhizotomy.
    Ojemann JG; Park TS; Komanetsky R; Day RA; Kaufman BA
    J Neurosurg; 1997 Jan; 86(1):28-33. PubMed ID: 8988078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of intraoperative electrophysiological monitoring in lumbosacral selective posterior rhizotomy for spastic cerebral palsy].
    Xu F; Cao X; Zhao ZY; Zhang P; Xu SG; Xu L
    Zhonghua Wai Ke Za Zhi; 2009 Jul; 47(14):1088-91. PubMed ID: 19781276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The classification and identification of human somatic and parasympathetic nerve fibres including urinary bladder afferents and efferents is preserved following spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2009; 49(6-7):263-86. PubMed ID: 19845099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual neurological function after sacral root resection during en-bloc sacrectomy: a systematic review.
    Zoccali C; Skoch J; Patel AS; Walter CM; Maykowski P; Baaj AA
    Eur Spine J; 2016 Dec; 25(12):3925-3931. PubMed ID: 26914097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve rootlets to be sectioned for spasticity resolution in selective dorsal rhizotomy.
    Fukuhara T; Najm IM; Levin KH; Luciano MG; Brant M S CL
    Surg Neurol; 2000 Aug; 54(2):126-32; discussion 133. PubMed ID: 11077094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Below the belt: sensory mapping and monitoring in the sacral-pudendal region.
    Eccher MA
    J Clin Neurophysiol; 2014 Aug; 31(4):323-5. PubMed ID: 25083843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complications after selective posterior rhizotomy for spasticity in children with cerebral palsy.
    Steinbok P; Schrag C
    Pediatr Neurosurg; 1998 Jun; 28(6):300-13. PubMed ID: 9782207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental study on combining selective rhizotomy of different anterior and posterior sacral roots for restoration of bladder function after spinal cord injury].
    Zhang SM; Hou CL; Xu RS
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Mar; 15(2):69-73. PubMed ID: 11286164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lumbosacral spinal segmental contributions to tibial and pudendal neuromodulation of bladder overactivity in cats.
    Bansal U; Fuller TW; Jiang X; Bandari J; Zhang Z; Shen B; Wang J; Roppolo JR; de Groat WC; Tai C
    Neurourol Urodyn; 2017 Aug; 36(6):1496-1502. PubMed ID: 27778372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sacral neuromodulation blocks pudendal inhibition of reflex bladder activity in cats: insight into the efficacy of sacral neuromodulation in Fowler's syndrome.
    Li X; Uy J; Yu M; Li S; Theisen K; Browning J; Shen B; Wang J; Roppolo JR; de Groat WC; Tai C
    Am J Physiol Regul Integr Comp Physiol; 2018 Jan; 314(1):R34-R42. PubMed ID: 28931549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological evidence of intraoperative monitoring efficacy in selective dorsal rhizotomy.
    Fukuhara T; Nakatsu D; Namba Y; Yamadori I
    Childs Nerv Syst; 2011 Sep; 27(9):1453-8. PubMed ID: 21503753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ipsilateral S2 nerve root transfer to pudendal nerve for restoration of external anal and urethral sphincter function: an anatomical study.
    Zhu L; Zhou ZB; Shen D; Chen AM
    Sci Rep; 2019 Sep; 9(1):13993. PubMed ID: 31570751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.