These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24165568)

  • 1. Highly confined ions store charge more efficiently in supercapacitors.
    Merlet C; Péan C; Rotenberg B; Madden PA; Daffos B; Taberna PL; Simon P; Salanne M
    Nat Commun; 2013; 4():2701. PubMed ID: 24165568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance.
    Lahrar EH; Simon P; Merlet C
    J Chem Phys; 2021 Nov; 155(18):184703. PubMed ID: 34773950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
    Merlet C; Péan C; Rotenberg B; Madden PA; Simon P; Salanne M
    J Phys Chem Lett; 2013 Jan; 4(2):264-8. PubMed ID: 26283432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.
    Chmiola J; Yushin G; Gogotsi Y; Portet C; Simon P; Taberna PL
    Science; 2006 Sep; 313(5794):1760-3. PubMed ID: 16917025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulations of ionic liquids at electrochemical interfaces.
    Merlet C; Rotenberg B; Madden PA; Salanne M
    Phys Chem Chem Phys; 2013 Oct; 15(38):15781-92. PubMed ID: 23985966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes.
    Pean C; Daffos B; Rotenberg B; Levitz P; Haefele M; Taberna PL; Simon P; Salanne M
    J Am Chem Soc; 2015 Oct; 137(39):12627-32. PubMed ID: 26369420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the molecular origin of supercapacitance in nanoporous carbon electrodes.
    Merlet C; Rotenberg B; Madden PA; Taberna PL; Simon P; Gogotsi Y; Salanne M
    Nat Mater; 2012 Mar; 11(4):306-10. PubMed ID: 22388172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons.
    Tsai WY; Taberna PL; Simon P
    J Am Chem Soc; 2014 Jun; 136(24):8722-8. PubMed ID: 24869895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors.
    Griffin JM; Forse AC; Tsai WY; Taberna PL; Simon P; Grey CP
    Nat Mater; 2015 Aug; 14(8):812-9. PubMed ID: 26099110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state NMR studies of supercapacitors.
    Griffin JM; Forse AC; Grey CP
    Solid State Nucl Magn Reson; 2016; 74-75():16-35. PubMed ID: 26974032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions.
    Burt R; Breitsprecher K; Daffos B; Taberna PL; Simon P; Birkett G; Zhao XS; Holm C; Salanne M
    J Phys Chem Lett; 2016 Oct; 7(19):4015-4021. PubMed ID: 27661760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?
    Kondrat S; Kornyshev AA
    Nanoscale Horiz; 2016 Jan; 1(1):45-52. PubMed ID: 32260601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon.
    Forse AC; Griffin JM; Wang H; Trease NM; Presser V; Gogotsi Y; Simon P; Grey CP
    Phys Chem Chem Phys; 2013 May; 15(20):7722-30. PubMed ID: 23595510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.