These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 24165749)
21. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. Vamsi Krishna K; Bharathi N; George Shiju S; Alagesan Paari K; Malaviya A Environ Sci Pollut Res Int; 2022 Jul; 29(32):47988-48019. PubMed ID: 35562606 [TBL] [Abstract][Full Text] [Related]
22. Improved efficiency of butanol production by absorbed lignocellulose fermentation. He Q; Chen H J Biosci Bioeng; 2013 Mar; 115(3):298-302. PubMed ID: 23085417 [TBL] [Abstract][Full Text] [Related]
23. Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation. Wu YD; Xue C; Chen LJ; Bai FW J Biosci Bioeng; 2016 Jan; 121(1):66-72. PubMed ID: 26149719 [TBL] [Abstract][Full Text] [Related]
24. Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications. Riaz S; Mazhar S; Abidi SH; Syed Q; Abbas N; Saleem Y; Nadeem AA; Maryam M; Essa R; Ashfaq S Arch Microbiol; 2022 Oct; 204(11):672. PubMed ID: 36251102 [TBL] [Abstract][Full Text] [Related]
25. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Xin F; Dong W; Jiang Y; Ma J; Zhang W; Wu H; Zhang M; Jiang M Crit Rev Biotechnol; 2018 Jun; 38(4):529-540. PubMed ID: 28911245 [TBL] [Abstract][Full Text] [Related]
27. Recent developments on sustainable biobutanol production: a novel integrative review. Saravanan P; Rajeswari S; Divyabaskaran ; López-Maldonado EA; Rajeshkannan R; Viswanathan S Environ Sci Pollut Res Int; 2024 Jul; 31(34):46858-46876. PubMed ID: 38981967 [TBL] [Abstract][Full Text] [Related]
28. An integrated approach: advances in the use of Clostridium for biofuel. Kök MS Biotechnol Genet Eng Rev; 2015; 31(1-2):69-81. PubMed ID: 27160660 [TBL] [Abstract][Full Text] [Related]
29. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains. Abd-Alla MH; Zohri AA; El-Enany AE; Ali SM Anaerobe; 2015 Apr; 32():77-86. PubMed ID: 25557787 [TBL] [Abstract][Full Text] [Related]
30. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model. Shukor H; Al-Shorgani NKN; Abdeshahian P; Hamid AA; Anuar N; Rahman NA; Kalil MS Bioresour Technol; 2014 Oct; 170():565-573. PubMed ID: 25171212 [TBL] [Abstract][Full Text] [Related]
31. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. Vees CA; Neuendorf CS; Pflügl S J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):753-787. PubMed ID: 32894379 [TBL] [Abstract][Full Text] [Related]
32. Utilization of excess sludge by acetone-butanol-ethanol fermentation employing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Kobayashi G; Eto K; Tashiro Y; Okubo K; Sonomoto K; Ishizaki A J Biosci Bioeng; 2005 May; 99(5):517-9. PubMed ID: 16233826 [TBL] [Abstract][Full Text] [Related]
33. Engineering Clostridium for improved solvent production: recent progress and perspective. Cheng C; Bao T; Yang ST Appl Microbiol Biotechnol; 2019 Jul; 103(14):5549-5566. PubMed ID: 31139901 [TBL] [Abstract][Full Text] [Related]
34. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Patakova P; Linhova M; Rychtera M; Paulova L; Melzoch K Biotechnol Adv; 2013; 31(1):58-67. PubMed ID: 22306328 [TBL] [Abstract][Full Text] [Related]
35. Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii. Mu X; Sun W; Liu C; Wang H Biotechnol Lett; 2011 Aug; 33(8):1587-91. PubMed ID: 21424838 [TBL] [Abstract][Full Text] [Related]
36. Oxidoreduction potential controlling for increasing the fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production. Xia M; Wang D; Xia Y; Shi H; Tian Z; Zheng Y; Wang M Microb Cell Fact; 2022 Jun; 21(1):130. PubMed ID: 35761287 [TBL] [Abstract][Full Text] [Related]
37. [Current status and prospects of biobutanol manufacturing technology]. Gu Y; Jiang Y; Wu H; Liu X; Li Z; Li J; Xiao H; Shen Z; Zhao J; Yang Y; Jiang W; Yang S Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):914-23. PubMed ID: 20954392 [TBL] [Abstract][Full Text] [Related]
38. Lignocellulosic ethanol and butanol production by Saccharomyces cerevisiae and Clostridium beijerinckii co-culture using non-detoxified corn stover hydrolysate. Jawad M; Wang H; Wu Y; Rehman O; Song Y; Xu R; Zhang Q; Gao H; Xue C J Biotechnol; 2024 Jan; 379():1-5. PubMed ID: 37944902 [TBL] [Abstract][Full Text] [Related]
39. In situ biobutanol recovery from clostridial fermentations: a critical review. Jiménez-Bonilla P; Wang Y Crit Rev Biotechnol; 2018 May; 38(3):469-482. PubMed ID: 28920460 [TBL] [Abstract][Full Text] [Related]
40. Conversion of food processing wastes to biofuel using clostridia. Abd-Alla MH; Zohri AA; El-Enany AE; Ali SM Anaerobe; 2017 Dec; 48():135-143. PubMed ID: 28823884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]