BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24165865)

  • 1. Joule heating effects on reservoir-based dielectrophoresis.
    Kale A; Patel S; Qian S; Hu G; Xuan X
    Electrophoresis; 2014 Mar; 35(5):721-7. PubMed ID: 24165865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment.
    Kale A; Patel S; Xuan X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices.
    Kale A; Patel S; Hu G; Xuan X
    Electrophoresis; 2013 Mar; 34(5):674-83. PubMed ID: 23192532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S; Qian S; Xuan X
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices.
    Malekanfard A; Liu Z; Song L; Kale A; Zhang C; Yu L; Song Y; Xuan X
    Electrophoresis; 2021 Mar; 42(5):626-634. PubMed ID: 32935875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis.
    Grom F; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2006 Apr; 27(7):1386-93. PubMed ID: 16568408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isomotive dielectrophoresis for parallel analysis of individual particles.
    Allen DJ; Accolla RP; Williams SJ
    Electrophoresis; 2017 Jun; 38(11):1441-1449. PubMed ID: 28112416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
    Xuan X
    Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature measurements in microfluidic systems: heat dissipation of negative dielectrophoresis barriers.
    Seger-Sauli U; Panayiotou M; Schnydrig S; Jordan M; Renaud P
    Electrophoresis; 2005 Jun; 26(11):2239-46. PubMed ID: 15861466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filmy channel microchip with amperometric detection.
    Wang W; Fu FF; Xu X; Lin JM; Chen G
    Electrophoresis; 2009 Nov; 30(22):3932-8. PubMed ID: 19885881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.
    Gallo-Villanueva RC; Sano MB; Lapizco-Encinas BH; Davalos RV
    Electrophoresis; 2014 Feb; 35(2-3):352-61. PubMed ID: 24002905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.