These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24165970)

  • 1. Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering.
    Du L; Lei DY; Yuan G; Fang H; Zhang X; Wang Q; Tang D; Min C; Maier SA; Yuan X
    Sci Rep; 2013 Oct; 3():3064. PubMed ID: 24165970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced subwavelength coupling and nano-focusing with optical fiber-plasmonic hybrid probe.
    Minn K; Howard Lee HW; Zhang Z
    Opt Express; 2019 Dec; 27(26):38098-38108. PubMed ID: 31878581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the focused gap-plasmon mode on tip-enhanced Raman excitation and scattering.
    Zhang C; Min C; Li L; Zhang Y; Wei S; Wang X; Yuan X
    Opt Express; 2023 Jan; 31(3):4216-4228. PubMed ID: 36785395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Luneburg and Eaton lenses.
    Zentgraf T; Liu Y; Mikkelsen MH; Valentine J; Zhang X
    Nat Nanotechnol; 2011 Mar; 6(3):151-5. PubMed ID: 21258334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries.
    Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD
    Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material.
    Zhou J; Barnard E; Cabrini S; Munechika K; Schwartzberg A; Weber-Bargioni A
    Opt Express; 2023 Jun; 31(12):20440-20448. PubMed ID: 37381438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging out-of-plane polarized emission patterns on gap mode SERS substrates: from high molecular coverage to the single molecule regime.
    Joshi PB; Anthony TP; Wilson AJ; Willets KA
    Faraday Discuss; 2017 Dec; 205():245-259. PubMed ID: 28956586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams.
    Mojarad NM; Agio M
    Opt Express; 2009 Jan; 17(1):117-22. PubMed ID: 19129879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light Localization and Magneto-Optic Enhancement in Ni Antidot Arrays.
    Rollinger M; Thielen P; Melander E; Östman E; Kapaklis V; Obry B; Cinchetti M; García-Martín A; Aeschlimann M; Papaioannou ET
    Nano Lett; 2016 Apr; 16(4):2432-8. PubMed ID: 27018661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.
    Yang AP; Du LP; Meng FF; Yuan XC
    Nanoscale; 2018 May; 10(19):9286-9291. PubMed ID: 29737348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation.
    Gu K; Sun M; Zhang Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous spectroscopic and topographic near-field imaging of TiO2 single surface states and interfacial electronic coupling.
    Sevinc PC; Wang X; Wang Y; Zhang D; Meixner AJ; Lu HP
    Nano Lett; 2011 Apr; 11(4):1490-4. PubMed ID: 21375338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio.
    Jiang RH; Chen C; Lin DZ; Chou HC; Chu JY; Yen TJ
    Nano Lett; 2018 Feb; 18(2):881-885. PubMed ID: 29281295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.