BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24166158)

  • 1. Fluidized-bed denitrification for mine waters. Part II: effects of Ni and Co.
    Zou G; Papirio S; Ylinen A; Di Capua F; Lakaniemi AM; Puhakka JA
    Biodegradation; 2014 Jun; 25(3):417-23. PubMed ID: 24166158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluidized-bed denitrification for mine waters. Part I: low pH and temperature operation.
    Papirio S; Ylinen A; Zou G; Peltola M; Esposito G; Puhakka JA
    Biodegradation; 2014 Jun; 25(3):425-35. PubMed ID: 24166159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluidized-bed denitrification of mining water tolerates high nickel concentrations.
    Zou G; Papirio S; van Hullebusch ED; Puhakka JA
    Bioresour Technol; 2015 Mar; 179():284-290. PubMed ID: 25549902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidized-bed reactor.
    Di Capua F; Milone I; Lakaniemi AM; Hullebusch EDV; Lens PNL; Esposito G
    Bioresour Technol; 2017 Aug; 238():534-541. PubMed ID: 28475996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of p-cresol and sulfide removal by a marine-denitrifying consortium.
    Meza-Escalante ER; Alvarez LH; Serrano D; Mendoza E; Bonola R
    J Basic Microbiol; 2015 Feb; 55(2):180-5. PubMed ID: 25418931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate reduction in a simulated free-water surface wetland system.
    Misiti TM; Hajaya MG; Pavlostathis SG
    Water Res; 2011 Nov; 45(17):5587-98. PubMed ID: 21885082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature & salt concentration on salt tolerant nitrate-perchlorate reducing bacteria: Nitrate degradation kinetics.
    Ebrahimi S; Nguyen TH; Roberts DJ
    Water Res; 2015 Oct; 83():345-53. PubMed ID: 26188598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor.
    Chen D; Yang K; Wang H; Lv B
    Water Sci Technol; 2014; 69(12):2417-22. PubMed ID: 24960002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of mine water.
    Klein R; Tischler JS; Mühling M; Schlömann M
    Adv Biochem Eng Biotechnol; 2014; 141():109-72. PubMed ID: 24357145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of water quality through biological denitrification.
    Shivran HS; Kumar D; Singh RV
    J Environ Sci Eng; 2006 Jan; 48(1):57-60. PubMed ID: 17913203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification.
    Namburath M; Papirio S; Moscariello C; Di Costanzo N; Pirozzi F; Alappat BJ; Sreekrishnan TR
    J Environ Manage; 2020 Dec; 275():111301. PubMed ID: 32866922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal removal from aqueous solution in sequential fluidized-bed reactors.
    Lee CI; Yang WF
    Environ Technol; 2005 Dec; 26(12):1345-53. PubMed ID: 16372569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formaldehyde biodegradation and its effect on the denitrification process.
    Eiroa M; Vilar A; Kennes C; Veiga MC
    Environ Technol; 2007 Sep; 28(9):1027-33. PubMed ID: 17910255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of hydrogen-dependent denitrification under varying pH and temperature conditions.
    Rezania B; Cicek N; Oleszkiewicz JA
    Biotechnol Bioeng; 2005 Dec; 92(7):900-6. PubMed ID: 16116656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor.
    Ricardo AR; Carvalho G; Velizarov S; Crespo JG; Reis MA
    Water Res; 2012 Sep; 46(14):4556-68. PubMed ID: 22748328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters.
    Sun Y; Nemati M
    Bioresour Technol; 2012 Jun; 114():207-16. PubMed ID: 22497708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria.
    Subedi G; Taylor J; Hatam I; Baldwin SA
    Chemosphere; 2017 Sep; 183():536-545. PubMed ID: 28570897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.
    Sahinkaya E; Kilic A
    Water Res; 2014 Mar; 50():278-86. PubMed ID: 24384544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.