These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24166638)

  • 1. RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.).
    Korzun V; Börner A; Melz G
    Theor Appl Genet; 1996 Jun; 92(8):1073-7. PubMed ID: 24166638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Expression Profiling and Fine Mapping Identifies a Gibberellin 2-Oxidase Gene Co-segregating With the Dominant Dwarfing Gene
    Braun EM; Tsvetkova N; Rotter B; Siekmann D; Schwefel K; Krezdorn N; Plieske J; Winter P; Melz G; Voylokov AV; Hackauf B
    Front Plant Sci; 2019; 10():857. PubMed ID: 31333700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RFLP mapping of genes affecting plant height and growth habit in rye.
    Plaschke J; Börner A; Xie DX; Koebner RM; Schlegel R; Gale MD
    Theor Appl Genet; 1993 Feb; 85(8):1049-54. PubMed ID: 24196157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel, dominant dwarfing gene (Ddw4) and its effect on morphological traits of rye.
    Kantarek Z; Masojć P; Bienias A; Milczarski P
    PLoS One; 2018; 13(6):e0199335. PubMed ID: 29912949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Dwarfing Gene
    Kroupin P; Chernook A; Karlov G; Soloviev A; Divashuk M
    Plants (Basel); 2019 May; 8(5):. PubMed ID: 31100890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line.
    Sun L; Yang W; Li Y; Shan Q; Ye X; Wang D; Yu K; Lu W; Xin P; Pei Z; Guo X; Liu D; Sun J; Zhan K; Chu J; Zhang A
    Plant J; 2019 Mar; 97(5):887-900. PubMed ID: 30466195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new aluminum tolerance gene located on rye chromosome arm 7RS.
    Matos M; Camacho MV; Pérez-Flores V; Pernaute B; Pinto-Carnide O; Benito C
    Theor Appl Genet; 2005 Jul; 111(2):360-9. PubMed ID: 15905993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mapping of QTLS for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye.
    Milczarski P; Masojć P
    Cell Mol Biol Lett; 2002; 7(2A):449-55. PubMed ID: 12378249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from 'Amigo' and 'Kavkaz' wheat-rye translocations of chromosome 1RS.1AL.
    Mater Y; Baenziger S; Gill K; Graybosch R; Whitcher L; Baker C; Specht J; Dweikat I
    Genome; 2004 Apr; 47(2):292-8. PubMed ID: 15060581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects.
    Grądzielewska A; Milczarski P; Molik K; Pawłowska E
    PLoS One; 2020; 15(3):e0229564. PubMed ID: 32119688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid dwarfness in crosses between wheat (Triticum aestivum L.) and rye (Secale cereale L.): a new look at an old phenomenon.
    Tikhenko N; Rutten T; Tsvetkova N; Voylokov A; Börner A
    Plant Biol (Stuttg); 2015 Mar; 17(2):320-6. PubMed ID: 25251214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative molecular-genetic mapping of genomes of rye (Secale cereale L.) and other cereals].
    Malyshev SV; Korzun VN; Zaben'kova KI; Voĭlokov AV; Berner A; Kartel' NA
    Tsitol Genet; 2003; 37(5):9-20. PubMed ID: 14650323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes.
    Mickelson-Young L; Endo TR; Gill BS
    Theor Appl Genet; 1995 Jun; 90(7-8):1007-11. PubMed ID: 24173055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of the effects of parental genotypes of rye lines on the development of quantitative traits in primary octaploid triticale. Plant height].
    Tikhenko HD; Tsvetkova NV; Voĭlokov AV
    Genetika; 2003 Jan; 39(1):64-9. PubMed ID: 12624935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal location of esterase, peroxidase and phosphoglucomutase isozyme structural genes in cultivated rye (Secale cereale L.).
    Wehling P; Schmidt-Stohn G; Wricke G
    Theor Appl Genet; 1985 Jul; 70(4):377-82. PubMed ID: 24253008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness.
    Li G; Gao D; La S; Wang H; Li J; He W; Yang E; Yang Z
    Planta; 2016 May; 243(5):1203-12. PubMed ID: 26883668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on homoeologous chromosome pairing and translocation induced by 5A/5R X 6A/6R wheat-rye substitution lines.
    Li JL; Wang XP; Zhong L; Xu XL
    Yi Chuan Xue Bao; 2006 Mar; 33(3):244-50. PubMed ID: 16553213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chromosome composition of wheat-rye lines and the influence of rye chromosomes on disease resistance and agronomic traits].
    Chumanova EV; Efremova TT; Trubacheeva NV; Arbuzova VS; Rosseeva LP
    Genetika; 2014 Nov; 50(11):1319-29. PubMed ID: 25739285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetics of β-amylase isozymes in wheat : 1. Allelic variation among hexaploid varieties and intrachromosomal gene locations.
    Ainsworth CC; Gale MD; Baird S
    Theor Appl Genet; 1983 Jul; 66(1):39-49. PubMed ID: 24263629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preferential elimination of chromosome 5R of rye in the progeny of 5R5D dimonosomics].
    Silkova OG; Leononva IN; Krasilova NM; Dubovets NI
    Genetika; 2011 Aug; 47(8):1064-72. PubMed ID: 21954615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.