These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24166806)

  • 1. Quadrupedal bounding with a segmented flexible torso: passive stability and feedback control.
    Cao Q; Poulakakis I
    Bioinspir Biomim; 2013 Dec; 8(4):046007. PubMed ID: 24166806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the energetics of quadrupedal running: predicting the metabolic cost of transport via a flexible-torso model.
    Cao Q; Poulakakis I
    Bioinspir Biomim; 2015 Sep; 10(5):056008. PubMed ID: 26334310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg-adjustment strategies for stable running in three dimensions.
    Peuker F; Maufroy C; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036002. PubMed ID: 22498642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust hopping based on virtual pendulum posture control.
    Sharbafi MA; Maufroy C; Ahmadabadi MN; Yazdanpanah MJ; Seyfarth A
    Bioinspir Biomim; 2013 Sep; 8(3):036002. PubMed ID: 23735558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension and customization of self-stability control in compliant legged systems.
    Ernst M; Geyer H; Blickhan R
    Bioinspir Biomim; 2012 Dec; 7(4):046002. PubMed ID: 22791685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
    Park HW; Kim S
    Bioinspir Biomim; 2015 Mar; 10(2):025003. PubMed ID: 25806404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biologically based neural system coordinates the joints and legs of a tetrapod.
    Hunt A; Schmidt M; Fischer M; Quinn R
    Bioinspir Biomim; 2015 Sep; 10(5):055004. PubMed ID: 26351756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.
    Vejdani HR; Blum Y; Daley MA; Hurst JW
    Bioinspir Biomim; 2013 Dec; 8(4):046006. PubMed ID: 24166776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.
    Huang KJ; Huang CK; Lin PC
    Bioinspir Biomim; 2014 Oct; 9(4):046004. PubMed ID: 25291720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and Its application to hexapod running.
    Hu CJ; Wang TK; Huang CK; Lin PC
    Bioinspir Biomim; 2019 Feb; 14(2):026005. PubMed ID: 30616229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The leg stiffnesses animals use may improve the stability of locomotion.
    Shen Z; Seipel J
    J Theor Biol; 2015 Jul; 377():66-74. PubMed ID: 25908205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.
    Spagna JC; Goldman DI; Lin PC; Koditschek DE; Full RJ
    Bioinspir Biomim; 2007 Mar; 2(1):9-18. PubMed ID: 17671322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning.
    Diamond A; Holland OE
    Bioinspir Biomim; 2014 Mar; 9(1):016015. PubMed ID: 24523354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints.
    Annunziata S; Paskarbeit J; Schneider A
    Bioinspir Biomim; 2011 Dec; 6(4):045003. PubMed ID: 22126821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotary and radial forcing effects on center-of-mass locomotion dynamics.
    Shen ZH; Larson PL; Seipel JE
    Bioinspir Biomim; 2014 Sep; 9(3):036020. PubMed ID: 25162748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable walking with asymmetric legs.
    Merker A; Rummel J; Seyfarth A
    Bioinspir Biomim; 2011 Dec; 6(4):045004. PubMed ID: 22126858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.