BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24167147)

  • 1. Osteoblast response to nanocrystalline calcium hydroxyapatite depends on carbonate content.
    Adams BR; Mostafa A; Schwartz Z; Boyan BD
    J Biomed Mater Res A; 2014 Sep; 102(9):3237-42. PubMed ID: 24167147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution.
    Spence G; Patel N; Brooks R; Bonfield W; Rushton N
    J Biomed Mater Res A; 2010 Mar; 92(4):1292-300. PubMed ID: 19343778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of nanosized carbonate-substituted hydroxyapatite and its polyhydroxyethylmethacrylate nanocomposite.
    Huang J; Best SM; Brooks RA; Rushton N; Bonfield W
    J Biomed Mater Res A; 2008 Dec; 87(3):598-607. PubMed ID: 18186069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response.
    Spence G; Patel N; Brooks R; Rushton N
    J Biomed Mater Res A; 2009 Jul; 90(1):217-24. PubMed ID: 18496864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles.
    Xu JL; Khor KA; Sui JJ; Zhang JH; Chen WN
    Biomaterials; 2009 Oct; 30(29):5385-91. PubMed ID: 19631375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.
    Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.
    Baba Ismail YM; Wimpenny I; Bretcanu O; Dalgarno K; El Haj AJ
    J Biomed Mater Res A; 2017 Jun; 105(6):1775-1785. PubMed ID: 28198131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts.
    Yang L; Perez-Amodio S; Barrère-de Groot FY; Everts V; van Blitterswijk CA; Habibovic P
    Biomaterials; 2010 Apr; 31(11):2976-89. PubMed ID: 20122718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium ion doped carbonated hydroxyapatite compositions: Synthesis, physicochemical characterisation and effect on osteogenic response in vitro.
    Salam N; Gibson IR
    Biomater Adv; 2022 Sep; 140():213068. PubMed ID: 35939955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
    Ripamonti U; Crooks J; Khoali L; Roden L
    Biomaterials; 2009 Mar; 30(7):1428-39. PubMed ID: 19081131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity.
    Lossdörfer S; Schwartz Z; Wang L; Lohmann CH; Turner JD; Wieland M; Cochran DL; Boyan BD
    J Biomed Mater Res A; 2004 Sep; 70(3):361-9. PubMed ID: 15293309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate.
    Shen D; Horiuchi N; Nozaki S; Miyashin M; Yamashita K; Nagai A
    Biomed Mater Eng; 2017; 28(1):9-21. PubMed ID: 28269740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical preparation of nanocrystalline biocompatible single-phase Mn-doped A-type carbonated hydroxyapatite (A-cHAp): effect of Mn doping on microstructure.
    Lala S; Ghosh M; Das PK; Kar T; Pradhan SK
    Dalton Trans; 2015 Dec; 44(46):20087-97. PubMed ID: 26530783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion.
    Sato M; Aslani A; Sambito MA; Kalkhoran NM; Slamovich EB; Webster TJ
    J Biomed Mater Res A; 2008 Jan; 84(1):265-72. PubMed ID: 17607739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonate release from carbonated hydroxyapatite in the wide temperature rage.
    Barinov SM; Rau JV; Cesaro SN; Durisin J; Fadeeva IV; Ferro D; Medvecky L; Trionfetti G
    J Mater Sci Mater Med; 2006 Jul; 17(7):597-604. PubMed ID: 16770543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].
    Liao JG; Li YQ; Duan XZ; Liu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3011-4. PubMed ID: 25752048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate-LB film as template.
    de Souza ID; Cruz MA; de Faria AN; Zancanela DC; Simão AM; Ciancaglini P; Ramos AP
    Colloids Surf B Biointerfaces; 2014 Jun; 118():31-40. PubMed ID: 24727116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles.
    Hong Z; Zhang P; Liu A; Chen L; Chen X; Jing X
    J Biomed Mater Res A; 2007 Jun; 81(3):515-22. PubMed ID: 17133447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.