These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24167153)

  • 21. Bioactive organic-inorganic poly(CLMA-co-HEA)/silica nanocomposites.
    Ivashchenko S; Escobar Ivirico JL; García Cruz DM; Campillo-Fernández A; Gallego Ferrer G; Monleón Pradas M
    J Biomater Appl; 2015 Mar; 29(8):1096-108. PubMed ID: 25294191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of polycaprolactone-polyethylene glycol methyl ether and polycaprolactone-chitosan electrospun mats potential for vascular tissue engineering.
    Sultana T; Amirian J; Park C; Lee SJ; Lee BT
    J Biomater Appl; 2017 Nov; 32(5):648-662. PubMed ID: 28956678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells.
    Yang X; Li Y; Liu X; Huang Q; He W; Zhang R; Feng Q; Benayahu D
    Biomed Mater; 2016 Dec; 12(1):015001. PubMed ID: 27910816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of electrospun silica-titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties.
    Wang X; Zhu J; Yin L; Liu S; Zhang X; Ao Y; Chen H
    J Biomed Mater Res A; 2012 Dec; 100(12):3511-7. PubMed ID: 22767362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid.
    Marycz K; Śmieszek A; Grzesiak J; Donesz-Sikorska A; Krzak-Roś J
    Biomed Mater; 2013 Dec; 8(6):065004. PubMed ID: 24280658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.
    Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG
    Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold.
    He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC
    J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications.
    Erisken C; Kalyon DM; Wang H
    Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica Aerogel-Polycaprolactone Scaffolds for Bone Tissue Engineering.
    Pontinha ADR; Moreira BB; Melo BL; Melo-Diogo D; Correia IJ; Alves P
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process.
    Jun SH; Lee EJ; Yook SW; Kim HE; Kim HW; Koh YH
    Acta Biomater; 2010 Jan; 6(1):302-7. PubMed ID: 19531388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells.
    Phadke A; Shih YR; Varghese S
    Macromol Biosci; 2012 Aug; 12(8):1022-32. PubMed ID: 22760917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential of placenta-derived mesenchymal stem cells as seed cells for bone tissue engineering: preliminary study of osteoblastic differentiation and immunogenicity.
    Zhong ZN; Zhu SF; Yuan AD; Lu GH; He ZY; Fa ZQ; Li WH
    Orthopedics; 2012 Sep; 35(9):779-88. PubMed ID: 22955387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanostructured poly(epsilon-caprolactone)-silica xerogel fibrous membrane for guided bone regeneration.
    Lee EJ; Teng SH; Jang TS; Wang P; Yook SW; Kim HE; Koh YH
    Acta Biomater; 2010 Sep; 6(9):3557-65. PubMed ID: 20304111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.
    Lopez-Heredia MA; Sohier J; Gaillard C; Quillard S; Dorget M; Layrolle P
    Biomaterials; 2008 Jun; 29(17):2608-15. PubMed ID: 18358527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Koh group influence on titanium surfaces and pure sol-gel silica for enhanced osteogenic activity.
    Guimarães RP; Xavier LGO; Maltos KLM; Sá AF; Domingues RZ; Carvalho VE; Elias DC; Discacciati JAC; Pacheco CMDF; Moreira AN
    J Biomater Appl; 2020 Sep; 35(3):405-421. PubMed ID: 32571173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topographically targeted osteogenesis of mesenchymal stem cells stimulated by inclusion bodies attached to polycaprolactone surfaces.
    Seras-Franzoso J; Tsimbouri PM; Burgess KV; Unzueta U; Garcia-Fruitos E; Vazquez E; Villaverde A; Dalby MJ
    Nanomedicine (Lond); 2014 Feb; 9(2):207-20. PubMed ID: 23631503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of polycaprolactone microspheres-aggregated scaffold with ultra big pores and fuzzy sphere surface by a one-step phase separation method.
    Wang M; Ma L; Li D; Jiang P; Gao C
    J Biomed Mater Res A; 2013 Nov; 101(11):3219-27. PubMed ID: 23554334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic bioactive microcarriers: co-delivery of growth factors and stem cells for bone tissue engineering.
    Perez RA; El-Fiqi A; Park JH; Kim TH; Kim JH; Kim HW
    Acta Biomater; 2014 Jan; 10(1):520-30. PubMed ID: 24121192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites.
    Korventausta J; Jokinen M; Rosling A; Peltola T; Yli-Urpo A
    Biomaterials; 2003 Dec; 24(28):5173-82. PubMed ID: 14568434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.