These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24167260)

  • 1. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands.
    Schreiber J; Wescoe ZL; Abu-Shumays R; Vivian JT; Baatar B; Karplus K; Akeson M
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18910-5. PubMed ID: 24167260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA.
    Laszlo AH; Derrington IM; Brinkerhoff H; Langford KW; Nova IC; Samson JM; Bartlett JJ; Pavlenok M; Gundlach JH
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):18904-9. PubMed ID: 24167255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopores discriminate among five C5-cytosine variants in DNA.
    Wescoe ZL; Schreiber J; Akeson M
    J Am Chem Soc; 2014 Nov; 136(47):16582-7. PubMed ID: 25347819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein nanopores to detect DNA methylation.
    de Souza N
    Nat Methods; 2014 Jan; 11(1):8. PubMed ID: 24524128
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of nanopore data using hidden Markov models.
    Schreiber J; Karplus K
    Bioinformatics; 2015 Jun; 31(12):1897-903. PubMed ID: 25649617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of epigenetic DNA modifications with a protein nanopore.
    Wallace EV; Stoddart D; Heron AJ; Mikhailova E; Maglia G; Donohoe TJ; Bayley H
    Chem Commun (Camb); 2010 Nov; 46(43):8195-7. PubMed ID: 20927439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bisulfite methylation profiling of large genomes.
    Reinders J; Paszkowski J
    Epigenomics; 2010 Apr; 2(2):209-20. PubMed ID: 22121871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation.
    Thalhammer A; Hansen AS; El-Sagheer AH; Brown T; Schofield CJ
    Chem Commun (Camb); 2011 May; 47(18):5325-7. PubMed ID: 21451870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules.
    Wanunu M; Cohen-Karni D; Johnson RR; Fields L; Benner J; Peterman N; Zheng Y; Klein ML; Drndic M
    J Am Chem Soc; 2011 Jan; 133(3):486-92. PubMed ID: 21155562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.
    Klungland A; Robertson AB
    Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying the epigenome using next generation sequencing.
    Ku CS; Naidoo N; Wu M; Soong R
    J Med Genet; 2011 Nov; 48(11):721-30. PubMed ID: 21825079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization retardation isothermal amplification (PRIA): a strategy enables sensitively quantify genome-wide 5-methylcytosine oxides rapidly on handy instruments with nanoscale sample input.
    Chen D; Wang Y; Mo M; Zhang J; Zhang Y; Xu Y; Liu SY; Chen J; Ma Y; Zhang L; Dai Z; Cai C; Zou X
    Nucleic Acids Res; 2019 Nov; 47(19):e119. PubMed ID: 31418020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications.
    Hong S; Cheng X
    Adv Exp Med Biol; 2016; 945():321-341. PubMed ID: 27826845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonenzymatic labeling of 5-hydroxymethylcytosine in nanopore sequencing.
    Lu X; He C
    Chembiochem; 2013 Jul; 14(11):1289-90. PubMed ID: 23780928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single Site Discrimination of Cytosine, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Target DNA Using Anthracene-Tagged Fluorescent Probes.
    Duprey JL; Bullen GA; Zhao ZY; Bassani DM; Peacock AF; Wilkie J; Tucker JH
    ACS Chem Biol; 2016 Mar; 11(3):717-21. PubMed ID: 26580817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.
    Frommer M; McDonald LE; Millar DS; Collis CM; Watt F; Grigg GW; Molloy PL; Paul CL
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1827-31. PubMed ID: 1542678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.
    Kizaki S; Zou T; Li Y; Han YW; Suzuki Y; Harada Y; Sugiyama H
    Chemistry; 2016 Nov; 22(46):16598-16601. PubMed ID: 27689340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals.
    Zhang HY; Xiong J; Qi BL; Feng YQ; Yuan BF
    Chem Commun (Camb); 2016 Jan; 52(4):737-40. PubMed ID: 26562407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA.
    Nestor C; Ruzov A; Meehan R; Dunican D
    Biotechniques; 2010 Apr; 48(4):317-9. PubMed ID: 20569209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.