These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 24167279)
1. Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Yang D; Ye X; Lorimer GH Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4298-305. PubMed ID: 24167279 [TBL] [Abstract][Full Text] [Related]
2. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. Ye X; Lorimer GH Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4289-97. PubMed ID: 24167257 [TBL] [Abstract][Full Text] [Related]
3. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285 [TBL] [Abstract][Full Text] [Related]
4. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. Taguchi H J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372 [TBL] [Abstract][Full Text] [Related]
5. Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. Koike-Takeshita A; Yoshida M; Taguchi H J Biol Chem; 2008 Aug; 283(35):23774-81. PubMed ID: 18567584 [TBL] [Abstract][Full Text] [Related]
6. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. Sameshima T; Ueno T; Iizuka R; Ishii N; Terada N; Okabe K; Funatsu T J Biol Chem; 2008 Aug; 283(35):23765-73. PubMed ID: 18567585 [TBL] [Abstract][Full Text] [Related]
7. Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form. Fei X; Ye X; LaRonde NA; Lorimer GH Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12775-80. PubMed ID: 25136110 [TBL] [Abstract][Full Text] [Related]
8. GroEL Ring Separation and Exchange in the Chaperonin Reaction. Yan X; Shi Q; Bracher A; Miličić G; Singh AK; Hartl FU; Hayer-Hartl M Cell; 2018 Jan; 172(3):605-617.e11. PubMed ID: 29336887 [TBL] [Abstract][Full Text] [Related]
9. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. Taguchi H; Tsukuda K; Motojima F; Koike-Takeshita A; Yoshida M J Biol Chem; 2004 Oct; 279(44):45737-43. PubMed ID: 15347650 [TBL] [Abstract][Full Text] [Related]
10. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin. Yoda H; Koike-Takeshita A Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948 [TBL] [Abstract][Full Text] [Related]
11. GroEL and the GroEL-GroES Complex. Ishii N Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8Å reveals rearrangement between two GroEL rings. Koike-Takeshita A; Arakawa T; Taguchi H; Shimamura T J Mol Biol; 2014 Oct; 426(21):3634-41. PubMed ID: 25174333 [TBL] [Abstract][Full Text] [Related]
13. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Hayer-Hartl MK; Martin J; Hartl FU Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601 [TBL] [Abstract][Full Text] [Related]
14. Symmetric GroEL-GroES complexes can contain substrate simultaneously in both GroEL rings. Llorca O; Marco S; Carrascosa JL; Valpuesta JM FEBS Lett; 1997 Mar; 405(2):195-9. PubMed ID: 9089290 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding. Llorca O; Carrascosa JL; Valpuesta JM J Biol Chem; 1996 Jan; 271(1):68-76. PubMed ID: 8550627 [TBL] [Abstract][Full Text] [Related]
16. Chaperonin GroEL-GroES Functions as both Alternating and Non-Alternating Engines. Yamamoto D; Ando T J Mol Biol; 2016 Jul; 428(15):3090-101. PubMed ID: 27393305 [TBL] [Abstract][Full Text] [Related]
17. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Kad NM; Ranson NA; Cliff MJ; Clarke AR J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049 [TBL] [Abstract][Full Text] [Related]
18. The role of ATP hydrolysis in the function of the chaperonin GroEL: dynamic complex formation with GroES. Kawata Y; Hongo K; Nosaka K; Furutsu Y; Mizobata T; Nagai J FEBS Lett; 1995 Aug; 369(2-3):283-6. PubMed ID: 7649273 [TBL] [Abstract][Full Text] [Related]
19. Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage. Corrales FJ; Fersht AR Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4509-12. PubMed ID: 8633099 [TBL] [Abstract][Full Text] [Related]
20. GroEL mediates protein folding with a two successive timer mechanism. Ueno T; Taguchi H; Tadakuma H; Yoshida M; Funatsu T Mol Cell; 2004 May; 14(4):423-34. PubMed ID: 15149592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]