BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24168217)

  • 1. Discriminating taxonomic categories and domains in mental simulations of concepts of varying concreteness.
    Anderson AJ; Murphy B; Poesio M
    J Cogn Neurosci; 2014 Mar; 26(3):658-81. PubMed ID: 24168217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories.
    Sachs O; Weis S; Zellagui N; Huber W; Zvyagintsev M; Mathiak K; Kircher T
    Brain Res; 2008 Jul; 1218():194-205. PubMed ID: 18514168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural dichotomy of word concreteness: a view from functional neuroimaging.
    Kumar U
    Cogn Process; 2016 Feb; 17(1):39-48. PubMed ID: 26410213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semantic richness, concreteness, and object domain: an electrophysiological study.
    Amsel BD; Cree GS
    Can J Exp Psychol; 2013 Jun; 67(2):117-29. PubMed ID: 23046416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural manifestation of the word concreteness effect: an electrical neuroimaging study.
    Adorni R; Proverbio AM
    Neuropsychologia; 2012 Apr; 50(5):880-91. PubMed ID: 22313624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the neural representation of fine-grained conceptual categories.
    Ghio M; Vaghi MMS; Perani D; Tettamanti M
    Neuroimage; 2016 May; 132():93-103. PubMed ID: 26883065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge.
    Della Rosa PA; Catricalà E; Canini M; Vigliocco G; Cappa SF
    Neuroimage; 2018 Jul; 175():449-459. PubMed ID: 29655937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional neuroanatomy of contextual acquisition of concrete and abstract words.
    Mestres-Missé A; Münte TF; Rodriguez-Fornells A
    J Cogn Neurosci; 2009 Nov; 21(11):2154-71. PubMed ID: 19199404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of features and categories in the organization of object knowledge: Evidence from adaptation fMRI.
    Geng J; Schnur TT
    Cortex; 2016 May; 78():174-194. PubMed ID: 27085513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrates of object identification: Functional magnetic resonance imaging evidence that category and visual attribute contribute to semantic knowledge.
    Wierenga CE; Perlstein WM; Benjamin M; Leonard CM; Rothi LG; Conway T; Cato MA; Gopinath K; Briggs R; Crosson B
    J Int Neuropsychol Soc; 2009 Mar; 15(2):169-81. PubMed ID: 19232155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomic and thematic categories: Neural correlates of categorization in an auditory-to-visual priming task using fMRI.
    Sass K; Sachs O; Krach S; Kircher T
    Brain Res; 2009 May; 1270():78-87. PubMed ID: 19306848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Categorical and thematic knowledge representation in the brain: neural correlates of taxonomic and thematic conceptual relations.
    Sachs O; Weis S; Krings T; Huber W; Kircher T
    Neuropsychologia; 2008 Jan; 46(2):409-18. PubMed ID: 17920085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes.
    Fernandino L; Humphries CJ; Seidenberg MS; Gross WL; Conant LL; Binder JR
    Neuropsychologia; 2015 Sep; 76():17-26. PubMed ID: 25863238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the semantic system by word imageability.
    Sabsevitz DS; Medler DA; Seidenberg M; Binder JR
    Neuroimage; 2005 Aug; 27(1):188-200. PubMed ID: 15893940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concreteness effects in single-meaning, multi-meaning and newly acquired words.
    Palmer SD; Macgregor LJ; Havelka J
    Brain Res; 2013 Nov; 1538():135-50. PubMed ID: 24064384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sensory-motor specificity of taxonomic and thematic conceptual relations: a behavioral and fMRI study.
    Kalénine S; Peyrin C; Pichat C; Segebarth C; Bonthoux F; Baciu M
    Neuroimage; 2009 Feb; 44(3):1152-62. PubMed ID: 18977304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding abstract and concrete concept representations based on single-trial fMRI data.
    Wang J; Baucom LB; Shinkareva SV
    Hum Brain Mapp; 2013 May; 34(5):1133-47. PubMed ID: 23568269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehension of concrete and abstract words in patients with selective anterior temporal lobe resection and in patients with selective amygdalo-hippocampectomy.
    Loiselle M; Rouleau I; Nguyen DK; Dubeau F; Macoir J; Whatmough C; Lepore F; Joubert S
    Neuropsychologia; 2012 Apr; 50(5):630-9. PubMed ID: 22245005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modality-independent decoding of semantic information from the human brain.
    Simanova I; Hagoort P; Oostenveld R; van Gerven MA
    Cereb Cortex; 2014 Feb; 24(2):426-34. PubMed ID: 23064107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sentential negation of abstract and concrete conceptual categories: a brain decoding multivariate pattern analysis study.
    Ghio M; Haegert K; Vaghi MM; Tettamanti M
    Philos Trans R Soc Lond B Biol Sci; 2018 Aug; 373(1752):. PubMed ID: 29914992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.