These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24168320)

  • 1. Does environmental robustness play a role in fluctuating environments?
    Ketola T; Kellermann VM; Loeschcke V; López-Sepulcre A; Kristensen TN
    Evolution; 2014 Feb; 68(2):587-94. PubMed ID: 24168320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates.
    Ketola T; Kellermann V; Kristensen TN; Loeschcke V
    J Evol Biol; 2012 Jun; 25(6):1209-15. PubMed ID: 22515705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster.
    Condon C; Cooper BS; Yeaman S; Angilletta MJ
    Evolution; 2014 Mar; 68(3):720-8. PubMed ID: 24152128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments.
    Ketola T; Mikonranta L; Zhang J; Saarinen K; Ormälä AM; Friman VP; Mappes J; Laakso J
    Evolution; 2013 Oct; 67(10):2936-44. PubMed ID: 24094344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can evolution of sexual dimorphism be triggered by developmental temperatures?
    Ketola T; Kristensen TN; Kellermann VM; Loeschcke V
    J Evol Biol; 2012 May; 25(5):847-55. PubMed ID: 22356559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic recombination and adaptation to fluctuating environments: selection for geotaxis in Drosophila melanogaster.
    Bourguet D; Gair J; Mattice M; Whitlock MC
    Heredity (Edinb); 2003 Jul; 91(1):78-84. PubMed ID: 12815456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of phenotype-environment associations by genetic responses to selection and phenotypic plasticity in a temporally autocorrelated environment.
    Michel MJ; Chevin LM; Knouft JH
    Evolution; 2014 May; 68(5):1374-84. PubMed ID: 24475940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the distribution of mutational fitness effects to environment, genetic background, and adaptedness: a case study with Drosophila.
    Wang AD; Sharp NP; Agrawal AF
    Evolution; 2014 Mar; 68(3):840-53. PubMed ID: 24206451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental thermal plasticity among Drosophila melanogaster populations.
    Fallis LC; Fanara JJ; Morgan TJ
    J Evol Biol; 2014 Mar; 27(3):557-64. PubMed ID: 26230171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of Drosophila simulans.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    J Evol Biol; 2014 Oct; 27(10):2113-22. PubMed ID: 25146297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stage-specific genotype-by-environment interactions for cold and heat hardiness in Drosophila melanogaster.
    Freda PJ; Ali ZM; Heter N; Ragland GJ; Morgan TJ
    Heredity (Edinb); 2019 Oct; 123(4):479-491. PubMed ID: 31164731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of body size and developmental time of Tribolium castaneum to constant versus fluctuating thermal conditions.
    Małek D; Drobniak S; Gozdek A; Pawlik K; Kramarz P
    J Therm Biol; 2015 Jul; 51():110-8. PubMed ID: 25965024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of reaction norm breeding values for robustness in Australian sheep.
    Waters DL; Clark SA; Brown DJ; Walkom SF; van der Werf JHJ
    Genet Sel Evol; 2024 Jan; 56(1):4. PubMed ID: 38183016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic plasticity of composite beef cattle performance using reaction norms model with unknown covariate.
    Santana ML; Eler JP; Cardoso FF; Albuquerque LG; Ferraz JB
    Animal; 2013 Feb; 7(2):202-10. PubMed ID: 23032089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures.
    Ketola T; Saarinen K
    J Evol Biol; 2015 Apr; 28(4):800-6. PubMed ID: 25704064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental stability opf Drosophila melanogaster under artificial and natural selection in constant and fluctuating environments.
    Bradley BP
    Genetics; 1980 Aug; 95(4):1033-42. PubMed ID: 6781983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the physiological performance of ectotherms in fluctuating thermal environments.
    Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS
    J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.
    Manenti T; Loeschcke V; Moghadam NN; Sørensen JG
    J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of Development and Body Mass to Daily Temperature Fluctuations: a Study on
    Kramarz P; Małek D; Naumiec K; Zając K; Drobniak SM
    Evol Biol; 2016; 43():356-367. PubMed ID: 27512238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental origins of sexually selected variation and a critique of the fluctuating asymmetry-sexual selection hypothesis.
    Polak M; Starmer WT
    Evolution; 2005 Mar; 59(3):577-85. PubMed ID: 15856700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.