These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24168435)

  • 1. Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation.
    Mertins O; Dimova R
    Langmuir; 2013 Nov; 29(47):14552-9. PubMed ID: 24168435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights on the interactions of chitosan with phospholipid vesicles. Part I: Effect of polymer deprotonation.
    Mertins O; Dimova R
    Langmuir; 2013 Nov; 29(47):14545-51. PubMed ID: 24168397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large and giant vesicles "decorated" with chitosan: effects of pH, salt or glucose stress, and surface adhesion.
    Quemeneur F; Rammal A; Rinaudo M; Pépin-Donat B
    Biomacromolecules; 2007 Aug; 8(8):2512-9. PubMed ID: 17658883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
    Hamai C; Cremer PS; Musser SM
    Biophys J; 2007 Mar; 92(6):1988-99. PubMed ID: 17189305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles.
    James HP; Jadhav S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110782. PubMed ID: 31945633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of molecular weight and pH on adsorption of chitosan at the surface of large and giant vesicles.
    Quemeneur F; Rinaudo M; Pépin-Donat B
    Biomacromolecules; 2008 Jan; 9(1):396-402. PubMed ID: 18067258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of giant unilamellar vesicles from electroformed vesicle suspensions and their extrusion through nano-pores.
    Patil YP; Ahluwalia AK; Jadhav S
    Chem Phys Lipids; 2013; 167-168():1-8. PubMed ID: 23328131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced rupture of vesicles adsorbed on glass by pore formation at the surface-bilayer interface.
    Kataoka-Hamai C; Yamazaki T
    Langmuir; 2015 Feb; 31(4):1312-9. PubMed ID: 25575280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids.
    Farge E; Devaux PF
    Biophys J; 1992 Feb; 61(2):347-57. PubMed ID: 1547324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of chitosan to phospholipid vesicles studied with isothermal titration calorimetry.
    Mertins O; Dimova R
    Langmuir; 2011 May; 27(9):5506-15. PubMed ID: 21466162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of polyelectrolyte chemical structure on their interaction with lipid membrane of zwitterionic liposomes.
    Quemeneur F; Rinaudo M; Pépin-Donat B
    Biomacromolecules; 2008 Aug; 9(8):2237-43. PubMed ID: 18590310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure.
    Tan C; Zhang Y; Abbas S; Feng B; Zhang X; Xia W; Xia S
    J Agric Food Chem; 2015 Aug; 63(32):7277-85. PubMed ID: 26173584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between phospholipids bilayer and chitosan in liposomes investigated by 31P NMR spectroscopy.
    Mertins O; Schneider PH; Pohlmann AR; da Silveira NP
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):294-9. PubMed ID: 19773149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time observation of lipoplex formation and interaction with anionic bilayer vesicles.
    Pantazatos SP; MacDonald RC
    J Membr Biol; 2003 Jan; 191(2):99-112. PubMed ID: 12533777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy.
    Cherney DP; Bridges TE; Harris JM
    Anal Chem; 2004 Sep; 76(17):4920-8. PubMed ID: 15373424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.