These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24168448)

  • 1. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury.
    Gomez-Eyles JL; Yupanqui C; Beckingham B; Riedel G; Gilmour C; Ghosh U
    Environ Sci Technol; 2013 Dec; 47(23):13721-9. PubMed ID: 24168448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments.
    Gilmour CC; Riedel GS; Riedel G; Kwon S; Landis R; Brown SS; Menzie CA; Ghosh U
    Environ Sci Technol; 2013 Nov; 47(22):13001-10. PubMed ID: 24156748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of dissolved organic matter on mercury and methylmercury sorption to activated carbon in soils: implications for remediation.
    Schwartz GE; Sanders JP; McBurney AM; Brown SS; Ghosh U; Gilmour CC
    Environ Sci Process Impacts; 2019 Mar; 21(3):485-496. PubMed ID: 30724289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations.
    Gomez-Eyles JL; Ghosh U
    Chemosphere; 2018 Jul; 203():179-187. PubMed ID: 29614411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated Carbon and Biochar Reduce Mercury Methylation Potentials in Aquatic Sediments.
    Bussan DD; Sessums RF; Cizdziel JV
    Bull Environ Contam Toxicol; 2016 Apr; 96(4):536-9. PubMed ID: 26779648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of mercury in sediment by using biochars under reducing conditions.
    Liu P; Ptacek CJ; Blowes DW; Finfrock YZ; Gordon RA
    J Hazard Mater; 2017 Mar; 325():120-128. PubMed ID: 27930996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Novel Equilibrium Passive Sampling Device for Methylmercury in Sediment and Soil Porewaters.
    Sanders JP; McBurney A; Gilmour CC; Schwartz GE; Washburn S; Kane Driscoll SB; Brown SS; Ghosh U
    Environ Toxicol Chem; 2020 Feb; 39(2):323-334. PubMed ID: 31692059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.
    Lewis AS; Huntington TG; Marvin-DiPasquale MC; Amirbahman A
    Environ Pollut; 2016 May; 212():366-373. PubMed ID: 26874318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-level fluctuations influence sediment porewater chemistry and methylmercury production in a flood-control reservoir.
    Eckley CS; Luxton TP; Goetz J; McKernan J
    Environ Pollut; 2017 Mar; 222():32-41. PubMed ID: 28104341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters.
    Ji X; Liu C; Pan G
    Ecotoxicol Environ Saf; 2020 Jan; 188():109888. PubMed ID: 31706242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary investigation of polymer-based in situ passive samplers for mercury and methylmercury.
    Taylor VF; Buckman KL; Burgess RM
    Chemosphere; 2019 Nov; 234():806-814. PubMed ID: 31247490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese(iv) oxide amendments reduce methylmercury concentrations in sediment porewater.
    Vlassopoulos D; Kanematsu M; Henry EA; Goin J; Leven A; Glaser D; Brown SS; O'Day PA
    Environ Sci Process Impacts; 2018 Dec; 20(12):1746-1760. PubMed ID: 30393799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton.
    Klaus JE; Hammerschmidt CR; Costello DM; Burton GA
    Environ Toxicol Chem; 2016 Jul; 35(7):1759-65. PubMed ID: 26636557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemical controls on the distribution of total mercury and methylmercury in sediments and porewater from the Yangtze River Estuary to the East China Sea.
    Cao F; Yang S; Yin D; Wang R
    Sci Total Environ; 2023 Sep; 892():164737. PubMed ID: 37301398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon.
    Kupryianchyk D; Rakowska MI; Grotenhuis JT; Koelmans AA
    Environ Pollut; 2012 Feb; 161():23-9. PubMed ID: 22230063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sediment and porewater profiles and fluxes of mercury and methylmercury in a small seepage lake in northern Minnesota.
    Hines NA; Brezonik PL; Engstrom DR
    Environ Sci Technol; 2004 Dec; 38(24):6610-7. PubMed ID: 15669319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments.
    Zhong H; Wang WX
    Environ Pollut; 2009 Mar; 157(3):981-6. PubMed ID: 19028001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Net methylmercury production as a basis for improved risk assessment of mercury-contaminated sediments.
    Skyllberg U; Drott A; Lambertsson L; Björn E; Karlsson T; Johnson T; Heinemo SA; Holmström H
    Ambio; 2007 Sep; 36(6):437-42. PubMed ID: 17985697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota.
    Jonsson S; Skyllberg U; Nilsson MB; Lundberg E; Andersson A; Björn E
    Nat Commun; 2014 Aug; 5():4624. PubMed ID: 25140406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.