BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24168517)

  • 1. Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations.
    Skacel P; Bursa J
    Comput Methods Biomech Biomed Engin; 2015; 18(8):816-28. PubMed ID: 24168517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of constitutive models of arterial layers with distributed collagen fibre orientations.
    Skacel P; Bursa J
    Acta Bioeng Biomech; 2014; 16(3):47-58. PubMed ID: 25308192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.
    Gasser TC; Ogden RW; Holzapfel GA
    J R Soc Interface; 2006 Feb; 3(6):15-35. PubMed ID: 16849214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poisson׳s ratio of arterial wall - Inconsistency of constitutive models with experimental data.
    Skacel P; Bursa J
    J Mech Behav Biomed Mater; 2016 Feb; 54():316-27. PubMed ID: 26539804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling non-symmetric collagen fibre dispersion in arterial walls.
    Holzapfel GA; Niestrawska JA; Ogden RW; Reinisch AJ; Schriefl AJ
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.
    Weisbecker H; Unterberger MJ; Holzapfel GA
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.
    Li K; Ogden RW; Holzapfel GA
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the material parameters of four-fibre family model based on uniaxial extension data of arterial walls.
    Li L; Qian X; Yan S; Hua L; Zhang H; Liu Z
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):695-703. PubMed ID: 22920461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications.
    Pierce DM; Ricken T; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2013; 16(12):1344-61. PubMed ID: 22764882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressibility of arterial wall - Direct measurement and predictions of compressible constitutive models.
    Skacel P; Bursa J
    J Mech Behav Biomed Mater; 2019 Feb; 90():538-546. PubMed ID: 30471541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remodelling of continuously distributed collagen fibres in soft connective tissues.
    Driessen NJ; Peters GW; Huyghe JM; Bouten CV; Baaijens FP
    J Biomech; 2003 Aug; 36(8):1151-8. PubMed ID: 12831741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a new constitutive model for abdominal muscles.
    Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM
    Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an analytical model of soft biological tissues.
    Federico S; Herzog W
    J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta.
    Horný L; Netušil M; Daniel M
    J Mech Behav Biomed Mater; 2014 Oct; 38():39-51. PubMed ID: 25016175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibre-matrix interaction in the human annulus fibrosus.
    Guo Z; Shi X; Peng X; Caner F
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):193-205. PubMed ID: 22100094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biaxial stretch can overcome discrepancy between global and local orientations of wavy collagen fibres.
    Turčanová M; Fischer J; Hermanová M; Bednařík Z; Skácel P; Burša J
    J Biomech; 2023 Dec; 161():111868. PubMed ID: 37976938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.