These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2416936)

  • 1. Hydrosmotic salt effect in toad skin: urea permeability and glutaraldehyde fixation of water channels.
    Aboulafia J; Lacaz-Vieira F
    J Membr Biol; 1985; 87(3):249-52. PubMed ID: 2416936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective fixation with glutaraldehyde of ADH-induced urea permeability sites in toad bladder.
    Eggena P
    Proc Soc Exp Biol Med; 1983 Jun; 173(2):244-51. PubMed ID: 6408646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glutaraldehyde on hydrosmotic response of toad bladder to vasopressin.
    Eggena P
    Am J Physiol; 1983 Jan; 244(1):C37-43. PubMed ID: 6295178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of vasopressin-stimulated urea transport across the toad bladder by thiourea.
    Eggena P
    J Clin Invest; 1973 Nov; 52(11):2963-70. PubMed ID: 4201269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrolytes control flows of water across the apical barrier in toad skin: the hydrosmotic salt effect.
    Benedictis EM; Lacaz-Vieira F
    J Membr Biol; 1982; 67(2):125-35. PubMed ID: 6808142
    [No Abstract]   [Full Text] [Related]  

  • 6. Water, proton, and urea transport in toad bladder endosomes that contain the vasopressin-sensitive water channel.
    Shi LB; Brown D; Verkman AS
    J Gen Physiol; 1990 May; 95(5):941-60. PubMed ID: 2163434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium flux in the apical membrane of the toad skin: aspects of its regulation and the importance of the ionic strength of the outer solution upon the reversibility of amiloride inhibition.
    Lacaz-Vieira F
    J Membr Biol; 1986; 92(1):27-36. PubMed ID: 3091839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and membrane events involved in the K-induced increase in water permeability of toad skin.
    Grosso A; Brown D; de Sousa RC
    Pflugers Arch; 1982 Nov; 395(2):145-51. PubMed ID: 6817296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of an apical cation-selective channel in function of tight epithelia.
    van Driessche W; Erlij D; Simaels J
    Biol Cell; 1989; 66(1-2):37-41. PubMed ID: 2478242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea and Na+ permeabilities in toad urinary bladder: one or two solute pathways?
    Hardy MA
    Am J Physiol; 1985 Jan; 248(1 Pt 2):F56-63. PubMed ID: 3918457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The passive permeability of the skin of anuran amphibia: a comparison of frogs (Rana pipiens) and toads (Bufo marinus).
    Bentley PJ; Yorio T
    J Physiol; 1976 Oct; 261(3):603-15. PubMed ID: 824445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfilaments and the hydrosmotic action of vasopressin in toad urinary bladder.
    Hardy MA; DiBona DR
    Am J Physiol; 1982 Sep; 243(3):C200-4. PubMed ID: 6810708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of anions and/or cell volume on the permeance of an apical water pathway induced by Hg in toad skin epithelium.
    Grosso A; Meda P; de Sousa RC
    J Membr Biol; 1993 May; 134(1):41-52. PubMed ID: 8340928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury blockage of apical water channels in toad skin (Bufo marinus).
    Grosso A; De Sousa RC
    J Physiol; 1993 Aug; 468():741-52. PubMed ID: 8254534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercurial reagents inhibit flow through ADH-induced water channels in toad bladder.
    Hoch BS; Gorfien PC; Linzer D; Fusco MJ; Levine SD
    Am J Physiol; 1989 May; 256(5 Pt 2):F948-53. PubMed ID: 2470262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of external and cellular Cl- ions on the activation of an apical electrodiffusional Cl- pathway in toad skin.
    Procopio J; Lacaz-Vieira F
    J Membr Biol; 1990 Jul; 117(1):57-67. PubMed ID: 1698229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mode of action of vasopressin: membrane microstructure and biological transport.
    de Sousa RC; Grosso A
    J Physiol (Paris); 1981; 77(4-5):643-69. PubMed ID: 6268776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types.
    Desmedt L; Simaels J; Van Driessche W
    J Gen Physiol; 1993 Jan; 101(1):85-102. PubMed ID: 7679717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion-induced dynamic behavior of apical water channels in vasopressin-sensitive epithelia exposed to mercury.
    Grosso A; Jaquet P; Brawand P; De Sousa RC
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1577-85. PubMed ID: 7517632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gossypol interferes selectively with water and urea permeability of toad bladder.
    Beaujean V; Crabbé J
    Pflugers Arch; 1987 Aug; 409(6):638-40. PubMed ID: 3114713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.