These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24169840)

  • 1. RFLP mapping of the sugary enhancer1 gene in maize.
    Tadmor Y; Azanza F; Han T; Rocheford TR; Juvik JA
    Theor Appl Genet; 1995 Aug; 91(3):489-94. PubMed ID: 24169840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize
    Zhang X; Mogel KJHV; Lor VS; Hirsch CN; De Vries B; Kaeppler HF; Tracy WF; Kaeppler SM
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20776-20785. PubMed ID: 31548423
    [No Abstract]   [Full Text] [Related]  

  • 3. Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays.
    Schultz JA; Juvik JA
    Plant Physiol Biochem; 2004 Jun; 42(6):457-64. PubMed ID: 15246058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing.
    Liu C; Zhou Q; Dong L; Wang H; Liu F; Weng J; Li X; Xie C
    BMC Genomics; 2016 Nov; 17(1):915. PubMed ID: 27842488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population.
    Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB
    BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains.
    Goldman IL; Rocheford TR; Dudley JW
    Theor Appl Genet; 1993 Oct; 87(1-2):217-24. PubMed ID: 24190215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Perturbation of the Starch Biosynthesis in Maize Endosperm Reveals Sugar-Responsive Gene Networks.
    Finegan C; Boehlein SK; Leach KA; Madrid G; Hannah LC; Koch KE; Tracy WF; Resende MFR
    Front Plant Sci; 2021; 12():800326. PubMed ID: 35211133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait.
    Moen T; Baranski M; Sonesson AK; Kjøglum S
    BMC Genomics; 2009 Aug; 10():368. PubMed ID: 19664221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping.
    Zhang Y; Cui M; Zhang J; Zhang L; Li C; Kan X; Sun Q; Deng D; Yin Z
    Toxins (Basel); 2016 Sep; 8(9):. PubMed ID: 27598199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat.
    Suenaga K; Khairallah M; William HM; Hoisington DA
    Genome; 2005 Feb; 48(1):65-75. PubMed ID: 15729398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (
    Su C; Wang W; Gong S; Zuo J; Li S; Xu S
    Front Plant Sci; 2017; 8():706. PubMed ID: 28533786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.
    Chen L; Li YX; Li C; Wu X; Qin W; Li X; Jiao F; Zhang X; Zhang D; Shi Y; Song Y; Li Y; Wang T
    BMC Plant Biol; 2016 Apr; 16():81. PubMed ID: 27068015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.).
    Zhang K; Kuraparthy V; Fang H; Zhu L; Sood S; Jones DC
    BMC Genomics; 2019 Nov; 20(1):889. PubMed ID: 31771502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative mapping in F2∶3 and F 6∶7 generations of quantitative trait loci for grain yield and yield components in maize.
    Austin DF; Lee M
    Theor Appl Genet; 1996 May; 92(7):817-26. PubMed ID: 24166546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross.
    Yang Z; Li X; Zhang N; Zhang YN; Jiang HW; Gao J; Kuai BK; Ding YL; Huang XQ
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn.
    Azanza F; Tadmor Y; Klein BP; Rocheford TR; Juvik JA
    Genome; 1996 Feb; 39(1):40-50. PubMed ID: 18469876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and epistasis analysis of quantitative trait loci for zeaxanthin concentration in maize kernel across different generations and environments.
    Dong E; Bai Y; Qin L; Liang Q; Liu C; Cai Y
    Breed Sci; 2020 Apr; 70(2):212-220. PubMed ID: 32523403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix.
    Tsarouhas V; Gullberg U; Lagercrantz U
    Theor Appl Genet; 2002 Aug; 105(2-3):277-288. PubMed ID: 12582530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population.
    Raihan MS; Liu J; Huang J; Guo H; Pan Q; Yan J
    Theor Appl Genet; 2016 Aug; 129(8):1465-77. PubMed ID: 27154588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation.
    Figueroa DM; Bass HW
    Chromosome Res; 2012 May; 20(4):363-80. PubMed ID: 22588802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.