BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 24169841)

  • 1. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.
    Azanza F; Kim D; Tanksley SD; Juvik JA
    Theor Appl Genet; 1995 Aug; 91(3):495-504. PubMed ID: 24169841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersion chmielewskii on tomato soluble solids, pH, and yield.
    Azanza F; Young TE; Kim D; Tanksley SD; Juvik JA
    Theor Appl Genet; 1994 Mar; 87(8):965-72. PubMed ID: 24190531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato.
    Chetelat RT; Deverna JW; Bennett AB
    Theor Appl Genet; 1995 Jul; 91(2):334-9. PubMed ID: 24169782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism.
    Balibrea ME; Martínez-Andújar C; Cuartero J; Bolarín MC; Pérez-Alfocea F
    Funct Plant Biol; 2006 Mar; 33(3):279-288. PubMed ID: 32689235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit.
    Osborn TC; Alexander DC; Fobes JF
    Theor Appl Genet; 1987 Jan; 73(3):350-6. PubMed ID: 24240994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato.
    Paterson AH; DeVerna JW; Lanini B; Tanksley SD
    Genetics; 1990 Mar; 124(3):735-42. PubMed ID: 1968874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit.
    Klann EM; Chetelat RT; Bennett AB
    Plant Physiol; 1993 Nov; 103(3):863-870. PubMed ID: 12231984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sink Metabolism in Tomato Fruit : III. Analysis of Carbohydrate Assimilation in a Wild Species.
    Yelle S; Hewitt JD; Robinson NL; Damon S; Bennett AB
    Plant Physiol; 1988 Jul; 87(3):737-40. PubMed ID: 16666217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition.
    Chetelat RT; Deverna JW; Bennett AB
    Theor Appl Genet; 1995 Jul; 91(2):327-33. PubMed ID: 24169781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression pattern of the Pho1a genes encoding plastidic starch phosphorylase correlates with the degradation of starch during fruit ripening in green-fruited and red-fruited tomato species.
    Slugina MA; Shchennikova AV; Kochieva EZ
    Funct Plant Biol; 2019 Nov; 46(12):1146-1157. PubMed ID: 31615619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyuronides in Avocado (Persea americana) and Tomato (Lycopersicon esculentum) Fruits Exhibit Markedly Different Patterns of Molecular Weight Downshifts during Ripening.
    Huber DJ; O'Donoghue EM
    Plant Physiol; 1993 Jun; 102(2):473-480. PubMed ID: 12231835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of
    Yu W; Peng F; Xiao Y; Wang G; Luo J
    Front Plant Sci; 2018; 9():1856. PubMed ID: 30619421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ripening behavior of wild tomato species.
    Grumet R; Fobes JF; Herner RC
    Plant Physiol; 1981 Dec; 68(6):1428-32. PubMed ID: 16662121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimation of Two Tomato Species to High Atmospheric CO(2): I. Sugar and Starch Concentrations.
    Yelle S; Beeson RC; Trudel MJ; Gosselin A
    Plant Physiol; 1989 Aug; 90(4):1465-72. PubMed ID: 16666952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments.
    Paterson AH; Damon S; Hewitt JD; Zamir D; Rabinowitch HD; Lincoln SE; Lander ES; Tanksley SD
    Genetics; 1991 Jan; 127(1):181-97. PubMed ID: 1673106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh.
    Cheung AY; McNellis T; Piekos B
    Plant Physiol; 1993 Apr; 101(4):1223-1229. PubMed ID: 12231777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity.
    Balibrea ME; Cuartero J; Bolarín MC; Pérez-Alfocea F
    Physiol Plant; 2003 May; 118(1):38-46. PubMed ID: 12702012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of ripening-related or -specific cDNA clones of tomato (Lycopersicon esculentum).
    Kinzer SM; Schwager SJ; Mutschler MA
    Theor Appl Genet; 1990 Apr; 79(4):489-96. PubMed ID: 24226453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteinase inhibitors I and II in fruit of wild tomato species: Transient components of a mechanism for defense and seed dispersal.
    Pearce G; Ryan CA; Liljegren D
    Planta; 1988 Oct; 175(4):527-31. PubMed ID: 24221936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine Metabolism in Ripening Tomato Fruit : II. Polyamine Metabolism and Synthesis in Relation to Enhanced Putrescine Content and Storage Life of a/c Tomato Fruit.
    Rastogi R; Davies PJ
    Plant Physiol; 1991 Jan; 95(1):41-5. PubMed ID: 16667978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.