BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24169942)

  • 41. Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards.
    Domínguez-Guerrero SF; Méndez-de la Cruz FR; Manríquez-Morán NL; Olson ME; Galina-Tessaro P; Arenas-Moreno DM; Bautista-Del Moral A; Benítez-Villaseñor A; Gadsden H; Lara-Reséndiz RA; Maciel-Mata CA; Muñoz-Nolasco FJ; Santos-Bibiano R; Valdez-Villavicencio JH; Woolrich-Piña GA; Muñoz MM
    Nat Commun; 2022 May; 13(1):2881. PubMed ID: 35610218
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incidence, causes and consequences of pregnancy failure in viviparous lizards: implications for research and conservation settings.
    Hare KM; Cree A
    Reprod Fertil Dev; 2010; 22(5):761-70. PubMed ID: 20450828
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity.
    Wang Y; Evans SE
    Naturwissenschaften; 2011 Sep; 98(9):739-43. PubMed ID: 21766177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Social context affects tail displays by Phrynocephalus vlangalii lizards from China.
    Peters RA; Ramos JA; Hernandez J; Wu Y; Qi Y
    Sci Rep; 2016 Aug; 6():31573. PubMed ID: 27526625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards.
    Lambert SM; Wiens JJ
    Evolution; 2013 Sep; 67(9):2614-30. PubMed ID: 24033171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Food restriction affects maternal investment but not neonate phenotypes in a viviparous lizard.
    Wang Y; Zeng ZG; Ma L; Li SR; Du WG
    Zool Res; 2017 Mar; 38(2):81-87. PubMed ID: 28409503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An atypical reproductive cycle in a common viviparous Asia Agamid Phrynocephalus vlangalii.
    Wu Y; Fu J; Yue B; Qi Y
    Ecol Evol; 2015 Nov; 5(21):5138-47. PubMed ID: 26640688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental causes of between-population difference in growth rate of a high-altitude lizard.
    Lu HL; Xu CX; Zeng ZG; Du WG
    BMC Ecol; 2018 Sep; 18(1):37. PubMed ID: 30249235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Placental specializations in lecithotrophic viviparous squamate reptiles.
    Stewart JR
    J Exp Zool B Mol Dev Evol; 2015 Sep; 324(6):549-61. PubMed ID: 26055953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An experimental study of the gestation costs in a viviparous lizard: a hormonal manipulation.
    Bleu J; Massot M; Haussy C; Meylan S
    Physiol Biochem Zool; 2013; 86(6):690-701. PubMed ID: 24241066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of hypoxia on the thermal physiology of a high-elevation lizard: implications for upslope-shifting species.
    Jiang ZW; Ma L; Mi CR; Du WG
    Biol Lett; 2021 Mar; 17(3):20200873. PubMed ID: 33726564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain).
    Zamora-Camacho FJ; Reguera S; Moreno-Rueda G
    Int J Biometeorol; 2016 May; 60(5):687-97. PubMed ID: 26373651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trophic niche and adaptation in highland lizards: sex has greater influences than species matching.
    Yang S; Qu J; Tang K; Zhao X; Zhou H; Hu J
    Integr Zool; 2024 May; 19(3):564-576. PubMed ID: 37858979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Placental and embryonic tissues exhibit aromatase activity in the viviparous lizard Niveoscincus metallicus.
    Parsley LM; Wapstra E; Jones SM
    Gen Comp Endocrinol; 2014 May; 200():61-6. PubMed ID: 24631640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of temperature on the locomotor performance and contraction properties of skeletal muscle from two Phrynocephalus lizards at high and low altitude.
    Niu Z; Li M; Pu P; Wang H; Zhang T; Tang X; Chen Q
    J Comp Physiol B; 2021 Sep; 191(5):907-916. PubMed ID: 34341847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential reproductive investment in co-occurring oviparous and viviparous common lizards (Zootoca vivipara) and implications for life-history trade-offs with viviparity.
    Recknagel H; Elmer KR
    Oecologia; 2019 May; 190(1):85-98. PubMed ID: 31062164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Placentation in the Mexican scincid lizard Plestiodon brevirostris (Squamata: Scincidae).
    Vázquez-García E; Villagrán-SantaCruz M
    J Morphol; 2023 Mar; 284(3):e21563. PubMed ID: 36719277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ornate tree lizards (Urosaurus ornatus) thermoregulate less accurately in habitats of high thermal quality.
    Lymburner AH; Blouin-Demers G
    J Therm Biol; 2019 Oct; 85():102402. PubMed ID: 31657742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Cold Hardiness of Phrynocephalus erythrurus, the Lizard Living at Highest Altitude in the World.
    Li XT; Wang Y; Lu SS; Li M; Men SK; Bai YC; Tang XL; Chen Q
    Cryo Letters; 2017; 38(3):216-227. PubMed ID: 28767745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reproductive mode evolution in lizards revisited: updated analyses examining geographic, climatic and phylogenetic effects support the cold-climate hypothesis.
    Watson CM; Makowsky R; Bagley JC
    J Evol Biol; 2014 Dec; 27(12):2767-80. PubMed ID: 25365910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.