BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 24170127)

  • 21. Genome-wide binding analysis of transcription factor Rice Indeterminate 1 reveals a complex network controlling rice floral transition.
    Zhang S; Deng L; Zhao L; Wu C
    J Integr Plant Biol; 2022 Sep; 64(9):1690-1705. PubMed ID: 35789063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide discovery of OsHOX24-binding sites and regulation of desiccation stress response in rice.
    Bhattacharjee A; Srivastava PL; Nath O; Jain M
    Plant Mol Biol; 2021 Jan; 105(1-2):205-214. PubMed ID: 33025523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice.
    Ding C; Lin X; Zuo Y; Yu Z; Baerson SR; Pan Z; Zeng R; Song Y
    Plant J; 2021 Dec; 108(5):1346-1364. PubMed ID: 34582078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
    Ke S; Liu XJ; Luan X; Yang W; Zhu H; Liu G; Zhang G; Wang S
    Gene; 2018 Oct; 675():285-300. PubMed ID: 29969697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OsSPL18 controls grain weight and grain number in rice.
    Yuan H; Qin P; Hu L; Zhan S; Wang S; Gao P; Li J; Jin M; Xu Z; Gao Q; Du A; Tu B; Chen W; Ma B; Wang Y; Li S
    J Genet Genomics; 2019 Jan; 46(1):41-51. PubMed ID: 30737149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic architecture to cause dynamic change in tiller and panicle numbers revealed by genome-wide association study and transcriptome profile in rice.
    Ma X; Li F; Zhang Q; Wang X; Guo H; Xie J; Zhu X; Ullah Khan N; Zhang Z; Li J; Li Z; Zhang H
    Plant J; 2020 Dec; 104(6):1603-1616. PubMed ID: 33058400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.
    Wu Y; Fu Y; Zhao S; Gu P; Zhu Z; Sun C; Tan L
    Plant Biotechnol J; 2016 Jan; 14(1):377-86. PubMed ID: 25923523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice.
    Jia M; Luo N; Meng X; Song X; Jing Y; Kou L; Liu G; Huang X; Wang Y; Li J; Wang B; Yu H
    J Genet Genomics; 2022 Aug; 49(8):766-775. PubMed ID: 35803541
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    He Y; Zhu M; Li Z; Jiang S; He Z; Xu S; Chen X; Hu Z; Zhang Z
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203082
    [No Abstract]   [Full Text] [Related]  

  • 30. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.
    Li F; Liu W; Tang J; Chen J; Tong H; Hu B; Li C; Fang J; Chen M; Chu C
    Cell Res; 2010 Jul; 20(7):838-49. PubMed ID: 20502443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice.
    Yoon J; Cho LH; Lee S; Pasriga R; Tun W; Yang J; Yoon H; Jeong HJ; Jeon JS; An G
    Mol Cells; 2019 Dec; 42(12):858-868. PubMed ID: 31771322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size.
    Song X; Meng X; Guo H; Cheng Q; Jing Y; Chen M; Liu G; Wang B; Wang Y; Li J; Yu H
    Nat Biotechnol; 2022 Sep; 40(9):1403-1411. PubMed ID: 35449414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. OsSPL14 promotes panicle branching and higher grain productivity in rice.
    Miura K; Ikeda M; Matsubara A; Song XJ; Ito M; Asano K; Matsuoka M; Kitano H; Ashikari M
    Nat Genet; 2010 Jun; 42(6):545-9. PubMed ID: 20495564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice.
    Liu M; Shi Z; Zhang X; Wang M; Zhang L; Zheng K; Liu J; Hu X; Di C; Qian Q; He Z; Yang DL
    Nat Plants; 2019 Apr; 5(4):389-400. PubMed ID: 30886331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14.
    Guo S; Xu Y; Liu H; Mao Z; Zhang C; Ma Y; Zhang Q; Meng Z; Chong K
    Nat Commun; 2013; 4():1566. PubMed ID: 23463009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR-based assessment of genomic structure in the conserved SQUAMOSA promoter-binding-like gene clusters in rice.
    Jiang M; He Y; Chen X; Zhang X; Guo Y; Yang S; Huang J; Traw MB
    Plant J; 2020 Dec; 104(5):1301-1314. PubMed ID: 32996244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice.
    Zhang W; Tan L; Sun H; Zhao X; Liu F; Cai H; Fu Y; Sun X; Gu P; Zhu Z; Sun C
    Mol Plant; 2019 Aug; 12(8):1075-1089. PubMed ID: 31002981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield.
    Wang S; Wu K; Qian Q; Liu Q; Li Q; Pan Y; Ye Y; Liu X; Wang J; Zhang J; Li S; Wu Y; Fu X
    Cell Res; 2017 Sep; 27(9):1142-1156. PubMed ID: 28776570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. E2F sites that can interact with E2F proteins cloned from rice are required for meristematic tissue-specific expression of rice and tobacco proliferating cell nuclear antigen promoters.
    Kosugi S; Ohashi Y
    Plant J; 2002 Jan; 29(1):45-59. PubMed ID: 12060226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice.
    Zhang C; Xu Y; Guo S; Zhu J; Huan Q; Liu H; Wang L; Luo G; Wang X; Chong K
    PLoS Genet; 2012; 8(4):e1002686. PubMed ID: 22570626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.