These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24170268)

  • 1. An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content.
    Bae S; Kim CW; Choi JS; Yang JW; Seo TS
    Anal Bioanal Chem; 2013 Nov; 405(29):9365-74. PubMed ID: 24170268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A droplet microfluidics platform for rapid microalgal growth and oil production analysis.
    Kim HS; Guzman AR; Thapa HR; Devarenne TP; Han A
    Biotechnol Bioeng; 2016 Aug; 113(8):1691-701. PubMed ID: 26724784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An array microhabitat system for high throughput studies of microalgal growth under controlled nutrient gradients.
    Kim BJ; Richter LV; Hatter N; Tung CK; Ahner BA; Wu M
    Lab Chip; 2015; 15(18):3687-94. PubMed ID: 26248065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated microfluidic platform for multiple processes from microalgal culture to lipid extraction.
    Lim HS; Kim JY; Kwak HS; Sim SJ
    Anal Chem; 2014 Sep; 86(17):8585-92. PubMed ID: 25090444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device.
    Holcomb RE; Mason LJ; Reardon KF; Cropek DM; Henry CS
    Anal Bioanal Chem; 2011 Apr; 400(1):245-53. PubMed ID: 21311874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics.
    Kim HS; Waqued SC; Nodurft DT; Devarenne TP; Yakovlev VV; Han A
    Analyst; 2017 Apr; 142(7):1054-1060. PubMed ID: 28294227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated microfluidic device in marine microalgae culture for toxicity screening application.
    Zheng G; Wang Y; Wang Z; Zhong W; Wang H; Li Y
    Mar Pollut Bull; 2013 Jul; 72(1):231-43. PubMed ID: 23664765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Automated Quantification of Microalgal Lipids on a Spinning Disc.
    Kim Y; Jeong SN; Kim B; Kim DP; Cho YK
    Anal Chem; 2015 Aug; 87(15):7865-71. PubMed ID: 26121222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production.
    Kim HS; Weiss TL; Thapa HR; Devarenne TP; Han A
    Lab Chip; 2014 Apr; 14(8):1415-25. PubMed ID: 24496295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules.
    Lee DH; Bae CY; Han JI; Park JK
    Anal Chem; 2013 Sep; 85(18):8749-56. PubMed ID: 24007509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.
    Morschett H; Wiechert W; Oldiges M
    Microb Cell Fact; 2016 Feb; 15():34. PubMed ID: 26861538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.
    Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL
    Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.
    Brennan L; Blanco Fernández A; Mostaert AS; Owende P
    J Microbiol Methods; 2012 Aug; 90(2):137-43. PubMed ID: 22521923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Cytotoxicity Testing System of Acetaminophen Using a Microfluidic Device (MFD) in HepG2 Cells.
    Ju SM; Jang HJ; Kim KB; Kim J
    J Toxicol Environ Health A; 2015; 78(16):1063-72. PubMed ID: 26241707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High frequency dielectrophoretic response of microalgae over time.
    Hadady H; Wong JJ; Hiibel SR; Redelman D; Geiger EJ
    Electrophoresis; 2014 Dec; 35(24):3533-40. PubMed ID: 25229637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex microfluidic system integrating sequential operations of microalgal lipid production.
    Kwak HS; Kim JY; Na SC; Jeon NL; Sim SJ
    Analyst; 2016 Feb; 141(4):1218-25. PubMed ID: 26783562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.