BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24170706)

  • 1. Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics.
    Stapel LC; Vastenhouw NL
    Brief Funct Genomics; 2014 Mar; 13(2):106-20. PubMed ID: 24170706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic marking of the zebrafish developmental program.
    Andersen IS; Lindeman LC; Reiner AH; Østrup O; Aanes H; Aleström P; Collas P
    Curr Top Dev Biol; 2013; 104():85-112. PubMed ID: 23587239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development.
    Kaaij LJT; van der Weide RH; Ketting RF; de Wit E
    Cell Rep; 2018 Jul; 24(1):1-10.e4. PubMed ID: 29972771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome dynamics and diversity in the early zebrafish embryo.
    Aanes H; Collas P; Aleström P
    Brief Funct Genomics; 2014 Mar; 13(2):95-105. PubMed ID: 24335756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Packaging development: how chromatin controls transcription in zebrafish embryogenesis.
    Horsfield JA
    Biochem Soc Trans; 2019 Apr; 47(2):713-724. PubMed ID: 30952803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis.
    Pauli A; Valen E; Lin MF; Garber M; Vastenhouw NL; Levin JZ; Fan L; Sandelin A; Rinn JL; Regev A; Schier AF
    Genome Res; 2012 Mar; 22(3):577-91. PubMed ID: 22110045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing pluripotency in early development.
    Paranjpe SS; Veenstra GJ
    Biochim Biophys Acta; 2015 Jun; 1849(6):626-36. PubMed ID: 25857441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene transcription in the zebrafish embryo: regulators and networks.
    Ferg M; Armant O; Yang L; Dickmeis T; Rastegar S; Strähle U
    Brief Funct Genomics; 2014 Mar; 13(2):131-43. PubMed ID: 24152666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo.
    Laue K; Rajshekar S; Courtney AJ; Lewis ZA; Goll MG
    Nat Commun; 2019 Apr; 10(1):1551. PubMed ID: 30948728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The chromatin accessibility dynamics during cell fate specifications in zebrafish early embryogenesis.
    Xu Q; Zhang Y; Xu W; Liu D; Jin W; Chen X; Hong N
    Nucleic Acids Res; 2024 Apr; 52(6):3106-3120. PubMed ID: 38364856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes.
    Pérez-Rico YA; Boeva V; Mallory AC; Bitetti A; Majello S; Barillot E; Shkumatava A
    Genome Res; 2017 Feb; 27(2):259-268. PubMed ID: 27965291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fish'n ChIPs: chromatin immunoprecipitation in the zebrafish embryo.
    Lindeman LC; Vogt-Kielland LT; Aleström P; Collas P
    Methods Mol Biol; 2009; 567():75-86. PubMed ID: 19588086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic DNA methylation: insights from the genomics era.
    Bogdanović O; Gómez-Skarmeta JL
    Brief Funct Genomics; 2014 Mar; 13(2):121-30. PubMed ID: 24064195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis.
    Pradhan SJ; Reddy PC; Smutny M; Sharma A; Sako K; Oak MS; Shah R; Pal M; Deshpande O; Dsilva G; Tang Y; Mishra R; Deshpande G; Giraldez AJ; Sonawane M; Heisenberg CP; Galande S
    Nat Commun; 2021 Oct; 12(1):6094. PubMed ID: 34667153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos.
    Bogdanović O; Fernández-Miñán A; Tena JJ; de la Calle-Mustienes E; Gómez-Skarmeta JL
    Methods; 2013 Aug; 62(3):207-15. PubMed ID: 23624103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prepatterning of developmental gene expression by modified histones before zygotic genome activation.
    Lindeman LC; Andersen IS; Reiner AH; Li N; Aanes H; Østrup O; Winata C; Mathavan S; Müller F; Aleström P; Collas P
    Dev Cell; 2011 Dec; 21(6):993-1004. PubMed ID: 22137762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-nucleus chromatin landscapes during zebrafish early embryogenesis.
    Lin X; Yang X; Chen C; Ma W; Wang Y; Li X; Zhao K; Deng Q; Feng W; Ma Y; Wang H; Zhu L; Sahu SK; Chen F; Zhang X; Dong Z; Liu C; Liu L; Liu C
    Sci Data; 2023 Jul; 10(1):464. PubMed ID: 37468546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation of genes during development: a conserved theme from flies to mammals.
    Vasanthi D; Mishra RK
    J Genet Genomics; 2008 Jul; 35(7):413-29. PubMed ID: 18640621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin architecture transitions from zebrafish sperm through early embryogenesis.
    Wike CL; Guo Y; Tan M; Nakamura R; Shaw DK; Díaz N; Whittaker-Tademy AF; Durand NC; Aiden EL; Vaquerizas JM; Grunwald D; Takeda H; Cairns BR
    Genome Res; 2021 Jun; 31(6):981-994. PubMed ID: 34006569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.