These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24171582)

  • 1. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals.
    Harrison AJ; Bilgili EA; Beaudoin SP; Taylor LS
    Anal Chem; 2013 Dec; 85(23):11449-55. PubMed ID: 24171582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study.
    Ahn T; Jueckstock M; Mandair GS; Henderson J; Sinder BP; Kozloff KM; Banaszak Holl MM
    J Struct Biol; 2022 Sep; 214(3):107878. PubMed ID: 35781024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging.
    Quaroni L
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating fungal decomposition of organic matter at sub-micrometer spatial scales using optical photothermal infrared (O-PTIR) microspectroscopy.
    Op De Beeck M; Troein C; Peterson C; Tunlid A; Persson P
    Appl Environ Microbiol; 2024 Feb; 90(2):e0148923. PubMed ID: 38289133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging.
    Kennedy E; Al-Majmaie R; Al-Rubeai M; Zerulla D; Rice JH
    J Biophotonics; 2015 Jan; 8(1-2):133-41. PubMed ID: 24307406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier-Transform Atomic Force Microscope-Based Photothermal Infrared Spectroscopy with Broadband Source.
    Xie Q; Xu XG
    Nano Lett; 2022 Nov; 22(22):9174-9180. PubMed ID: 36368003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of micro- and nanoscale heterogeneities within environmentally relevant thin films containing biological components, oxyanions and minerals using AFM-PTIR spectroscopy.
    Kim D; Grassian VH
    Environ Sci Process Impacts; 2023 Mar; 25(3):484-495. PubMed ID: 36789672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope.
    Wang H; Xie Q; Xu XG
    Adv Drug Deliv Rev; 2022 Jan; 180():114080. PubMed ID: 34906646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk to Nanometer-Scale Infrared Spectroscopy of Pharmaceutical Dry Powder Aerosols.
    Khanal D; Zhang J; Ke WR; Banaszak Holl MM; Chan HK
    Anal Chem; 2020 Jun; 92(12):8323-8332. PubMed ID: 32406232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Bacterial Amyloids by Nano-infrared Spectroscopy.
    Raussens V; Waeytens J
    Methods Mol Biol; 2022; 2538():117-129. PubMed ID: 35951297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale.
    Reiner E; Weston F; Pleshko N; Querido W
    Appl Spectrosc; 2023 Nov; 77(11):1311-1324. PubMed ID: 37774686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy.
    Mayet C; Dazzi A; Prazeres R; Ortega JM; Jaillard D
    Analyst; 2010 Oct; 135(10):2540-5. PubMed ID: 20820491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.
    Lu F; Belkin MA
    Opt Express; 2011 Oct; 19(21):19942-7. PubMed ID: 21997003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy.
    Schwartz JJ; Pavlidis G; Centrone A
    Anal Chem; 2022 Sep; 94(38):13126-13135. PubMed ID: 36099442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically characterizing the cortical cell nano-structure of human hair using atomic force microscopy integrated with infrared spectroscopy (AFM-IR).
    Fellows AP; Casford MTL; Davies PB
    Int J Cosmet Sci; 2022 Feb; 44(1):42-55. PubMed ID: 34820858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of ATR-FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section.
    Chua L; Banas A; Banas K
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles.
    Olson NE; Xiao Y; Lei Z; Ault AP
    Anal Chem; 2020 Jul; 92(14):9932-9939. PubMed ID: 32519841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.