These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 24172258)
1. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots. Chen C; Li F Nanoscale Res Lett; 2013 Oct; 8(1):453. PubMed ID: 24172258 [TBL] [Abstract][Full Text] [Related]
2. A new method to disperse CdS quantum dot-sensitized TiO2 nanotube arrays into P3HT:PCBM layer for the improvement of efficiency of inverted polymer solar cells. Li F; Chen C; Tan F; Yue G; Shen L; Zhang W Nanoscale Res Lett; 2014; 9(1):240. PubMed ID: 24936158 [TBL] [Abstract][Full Text] [Related]
3. Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer. Thanihaichelvan M; Loheeswaran S; Balashangar K; Velauthapillai D; Ravirajan P Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960444 [TBL] [Abstract][Full Text] [Related]
4. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. Hsieh CH; Cheng YJ; Li PJ; Chen CH; Dubosc M; Liang RM; Hsu CS J Am Chem Soc; 2010 Apr; 132(13):4887-93. PubMed ID: 20222734 [TBL] [Abstract][Full Text] [Related]
5. Simultaneously Enhancing the Efficiency and Stability of Perovskite Solar Cells by Using P3HT/PEDOT:PSS as a Double Hole Transport Layer. Yang X; Luo M; Zhang Q; Huang H; Yao Y; Yang Y; Li Y; Cheng W; Li P Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330634 [TBL] [Abstract][Full Text] [Related]
7. Semitransparent inverted polymer solar cells employing a sol-gel-derived TiO2 electron-selective layer on FTO and MoO3/Ag/MoO3 transparent electrode. Li F; Chen C; Tan F; Li C; Yue G; Shen L; Zhang W Nanoscale Res Lett; 2014; 9(1):579. PubMed ID: 25332693 [TBL] [Abstract][Full Text] [Related]
8. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT:PSS buffer layers. Oh SH; Heo SJ; Yang JS; Kim HJ ACS Appl Mater Interfaces; 2013 Nov; 5(22):11530-4. PubMed ID: 24175740 [TBL] [Abstract][Full Text] [Related]
9. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells. Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773 [TBL] [Abstract][Full Text] [Related]
10. Photocurrent Enhancement of P3HT:PCBM Organic Solar Cell with Cylindrical Ag-NPs by EBM. Park GC J Nanosci Nanotechnol; 2015 Aug; 15(8):5963-6. PubMed ID: 26369181 [TBL] [Abstract][Full Text] [Related]
11. High-performance solution-based CdS-conjugated hybrid polymer solar cells. Imran M; Ikram M; Shahzadi A; Dilpazir S; Khan H; Shahzadi I; Yousaf SA; Ali S; Geng J; Huang Y RSC Adv; 2018 May; 8(32):18051-18058. PubMed ID: 35542089 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of Mn Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776 [TBL] [Abstract][Full Text] [Related]
13. The effect of gold quantum dots/grating-coupled surface plasmons in inverted organic solar cells. Kuntamung K; Yaiwong P; Lertvachirapaiboon C; Ishikawa R; Shinbo K; Kato K; Ounnunkad K; Baba A R Soc Open Sci; 2021 Mar; 8(3):210022. PubMed ID: 33959372 [TBL] [Abstract][Full Text] [Related]
14. In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells. Woo S; Jeong JH; Lyu HK; Han YS; Kim Y Nanoscale Res Lett; 2012 Nov; 7(1):641. PubMed ID: 23173992 [TBL] [Abstract][Full Text] [Related]
15. Visible light photocatalysis via 3D-ordered macroporous TiO2 films sensitized with CdS quantum dots. Xie H; Zeng T; Jin S; Li Y; Wang X; Sui X; Zhao X J Nanosci Nanotechnol; 2013 Feb; 13(2):1461-6. PubMed ID: 23646661 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Long-term and Thermal Stability of Polymer Solar Cells in Air at High Humidity with the Formation of Unusual Quantum Dot Networks. Tan L; Yang F; Kim MR; Li P; Gangadharan DT; Margot J; Izquierdo R; Chaker M; Ma D ACS Appl Mater Interfaces; 2017 Aug; 9(31):26257-26267. PubMed ID: 28718290 [TBL] [Abstract][Full Text] [Related]
17. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell. Kumar PN; Deepa M; Srivastava AK Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507 [TBL] [Abstract][Full Text] [Related]
18. Chemical Analysis of the Interface in Bulk-Heterojunction Solar Cells by X-ray Photoelectron Spectroscopy Depth Profiling. Busby Y; List-Kratochvil EJ; Pireaux JJ ACS Appl Mater Interfaces; 2017 Feb; 9(4):3842-3848. PubMed ID: 28072913 [TBL] [Abstract][Full Text] [Related]
19. Influence of P3HT:PCBM Ratio on Thermal and Transport Properties of Bulk Heterojunction Solar Cells. Korte D; Pavlica E; Klančar D; Bratina G; Pawlak M; Gondek E; Song P; Liu J; Derkowska-Zielinska B Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676353 [TBL] [Abstract][Full Text] [Related]
20. Double-Sided Transparent TiO Chen C; Ling L; Li F Nanoscale Res Lett; 2017 Dec; 12(1):4. PubMed ID: 28054330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]