BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24172283)

  • 1. Discriminating crop, weeds and soil surface with a terrestrial LIDAR sensor.
    Andújar D; Rueda-Ayala V; Moreno H; Rosell-Polo JR; Escolá A; Valero C; Gerhards R; Fernández-Quintanilla C; Dorado J; Griepentrog HW
    Sensors (Basel); 2013 Oct; 13(11):14662-75. PubMed ID: 24172283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Capability and Potential of LiDAR for Weed Detection.
    Shahbazi N; Ashworth MB; Callow JN; Mian A; Beckie HJ; Speidel S; Nicholls E; Flower KC
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust crop and weed segmentation under uncontrolled outdoor illumination.
    Jeon HY; Tian LF; Zhu H
    Sensors (Basel); 2011; 11(6):6270-83. PubMed ID: 22163954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence.
    Panneton B; Guillaume S; Samson G; Roger JM
    Appl Spectrosc; 2011 Jan; 65(1):10-9. PubMed ID: 21211148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasonic system for weed detection in cereal crops.
    Andújar D; Weis M; Gerhards R
    Sensors (Basel); 2012 Dec; 12(12):17343-57. PubMed ID: 23443401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.
    Oyeogbe AI; Das TK; Bhatia A; Singh SB
    Environ Monit Assess; 2017 Apr; 189(4):198. PubMed ID: 28361488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrients Supplementation through Organic Manures Influence the Growth of Weeds and Maize Productivity.
    Ghosh D; Brahmachari K; Skalicky M; Hossain A; Sarkar S; Dinda NK; Das A; Pramanick B; Moulick D; Brestic M; Raza MA; Barutcular C; Fahad S; Saneoka H; El Sabagh A
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra.
    Panneton B; Guillaume S; Roger JM; Samson G
    Appl Spectrosc; 2010 Jan; 64(1):30-6. PubMed ID: 20132595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].
    Wu Q; Sun H; Li MZ; Song YY; Zhang YE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):178-83. PubMed ID: 25993844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Ground Vineyard Reconstruction Using a LiDAR-Based Automated System.
    Moreno H; Valero C; Bengochea-Guevara JM; Ribeiro Á; Garrido-Izard M; Andújar D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-planting weed detection based on ground field spectral data.
    Pott LP; Amado TJ; Schwalbert RA; Sebem E; Jugulam M; Ciampitti IA
    Pest Manag Sci; 2020 Mar; 76(3):1173-1182. PubMed ID: 31587478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant species coexistence alleviates the impacts of lead on Zea mays L.
    Yang R; Liu L; Zan S; Tang J; Chen X
    J Environ Sci (China); 2012; 24(3):396-401. PubMed ID: 22655351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.
    Chen Y; Wu Z; Zhao B; Fan C; Shi S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops.
    Llop J; Gil E; Llorens J; Miranda-Fuentes A; Gallart M
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Instance Segmentation-Based Method to Obtain the Leaf Age and Plant Centre of Weeds in Complex Field Environments.
    Quan L; Wu B; Mao S; Yang C; Li H
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops.
    Andújar D; Ribeiro Á; Fernández-Quintanilla C; Dorado J
    Sensors (Basel); 2011; 11(3):2304-18. PubMed ID: 22163740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of weed control efficacy and crop safety of the new HPPD-inhibiting herbicide-QYR301.
    Wang H; Liu W; Zhao K; Yu H; Zhang J; Wang J
    Sci Rep; 2018 May; 8(1):7910. PubMed ID: 29785001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach to the Use of Depth Cameras for Weed Volume Estimation.
    Andújar D; Dorado J; Fernández-Quintanilla C; Ribeiro A
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.
    Colbach N; Fernier A; Le Corre V; Messéan A; Darmency H
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11582-11600. PubMed ID: 28324251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient absorbtion of weeds in maize.
    Lehoczky E; Kismányoky A; Nagy P; Németh T
    Commun Agric Appl Biol Sci; 2008; 73(4):951-7. PubMed ID: 19226848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.