These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 2417247)

  • 1. Molecular model of the action potential sodium channel.
    Guy HR; Seetharamulu P
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):508-12. PubMed ID: 2417247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6.
    Sato Y; Sakaguchi M; Goshima S; Nakamura T; Uozumi N
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):60-5. PubMed ID: 11756658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations.
    Guy HR
    Biophys J; 1984 Jan; 45(1):249-61. PubMed ID: 6324907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of hydropathy profiles of voltage-gated ionic channels.
    Sawaryn A; Drouin H
    Experientia; 1991 Sep; 47(9):962-4. PubMed ID: 1915780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of the voltage-sensitive sodium channel. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure.
    Greenblatt RE; Blatt Y; Montal M
    FEBS Lett; 1985 Dec; 193(2):125-34. PubMed ID: 2415395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
    Catterall WA
    Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insight into the transmembrane segments 3 and 4 of the hERG potassium channel.
    Li Q; Wong YL; Ng HQ; Gayen S; Kang C
    J Pept Sci; 2014 Dec; 20(12):935-44. PubMed ID: 25331429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed tertiary structure of the sodium channel.
    Sato C; Matsumoto G
    Biochem Biophys Res Commun; 1992 Jul; 186(2):1158-67. PubMed ID: 1323284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic peptides corresponding to the four P regions of Electrophorus electricus Na+ channel: interaction with and organization in model phospholipid membranes.
    Pouny Y; Shai Y
    Biochemistry; 1995 Jun; 34(23):7712-21. PubMed ID: 7779818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction fingerprint of transmembrane segments in voltage sensor domains.
    Boonamnaj P; Pandey RB; Sompornpisut P
    Biophys Chem; 2021 Oct; 277():106649. PubMed ID: 34147849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes.
    Peled-Zehavi H; Arkin IT; Engelman DM; Shai Y
    Biochemistry; 1996 May; 35(21):6828-38. PubMed ID: 8639634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels.
    Gurevitz M
    Toxicon; 2012 Sep; 60(4):502-11. PubMed ID: 22694883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors.
    Oiki S; Madison V; Montal M
    Proteins; 1990; 8(3):226-36. PubMed ID: 2177892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of gating and drug block of sodium channels.
    Catterall WA
    Novartis Found Symp; 2002; 241():206-18; discussion 218-32. PubMed ID: 11771647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.
    Zhang L; Sato Y; Hessa T; von Heijne G; Lee JK; Kodama I; Sakaguchi M; Uozumi N
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8263-8. PubMed ID: 17488813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Conserved motifs in voltage sensing proteins].
    Wang CH; Xie ZL; Lv JW; Yu ZD; Shao SL
    Sheng Li Xue Bao; 2012 Aug; 64(4):379-86. PubMed ID: 22907298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.
    Sanchez-Sandoval AL; Herrera Carrillo Z; Díaz Velásquez CE; Delgadillo DM; Rivera HM; Gomora JC
    PLoS One; 2018; 13(2):e0193490. PubMed ID: 29474447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The screw-helical voltage gating of ion channels.
    Keynes RD; Elinder F
    Proc Biol Sci; 1999 Apr; 266(1421):843-52. PubMed ID: 10343407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
    Elliott DJ; Neale EJ; Munsey TS; Bannister JP; Sivaprasadarao A
    Mol Membr Biol; 2012 Dec; 29(8):321-32. PubMed ID: 22881396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.