These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24172647)
1. New perspectives for direct PDMS microfabrication using a CD-DVD laser. Hautefeuille M; Cabriales L; Pimentel-Domínguez R; Velázquez V; Hernández-Cordero J; Oropeza-Ramos L; Rivera M; Carreón-Castro MP; Grether M; López-Moreno E Lab Chip; 2013 Dec; 13(24):4848-54. PubMed ID: 24172647 [TBL] [Abstract][Full Text] [Related]
2. Controlled Solvent-Free Formation of Embedded PDMS-Derived Carbon Nanodomains with Tunable Fluorescence Using Selective Laser Ablation with A Low-Power CD Laser. González-Vázquez MJ; Hautefeuille M Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400500 [TBL] [Abstract][Full Text] [Related]
3. 3D microfabrication by applying the laser-induced bubble method to the thermoset polymer PDMS using a conventional nanosecond laser. Toba Y; Hanada Y Opt Lett; 2022 Dec; 47(24):6436-6439. PubMed ID: 36538456 [TBL] [Abstract][Full Text] [Related]
4. Use of a CD laser pickup head to fabricate microelectrodes in polymethylmethacrylate substrates for biosensing applications. López-Aparicio J; Hautefeuille M; Herrera-Domínguez S; Razo-de-León A; Cano-Jorge M; Rojas-Benito I; Centeno-Sierra M; Fiordelisio-Coll T; Stern-Forgach CE Biomed Microdevices; 2017 Mar; 19(1):5. PubMed ID: 28074385 [TBL] [Abstract][Full Text] [Related]
5. A simple method for fabricating patterned curvilinear microstructures in poly(dimethylsiloxane) by selective wetting. Ke X; Tang J Chemphyschem; 2013 Apr; 14(5):946-51. PubMed ID: 23436571 [TBL] [Abstract][Full Text] [Related]
6. Rapid prototyping of PDMS microdevices via Yan S; Wang S; Hao Z; Liu M; Miao C; Alam MF; Bai R; Li L; Luo Y; Liu T; Lin B; Zhang W; Lu Y Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33418543 [TBL] [Abstract][Full Text] [Related]
8. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation. Madadi H; Mohammadi M; Casals-Terré J; López RC Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728 [TBL] [Abstract][Full Text] [Related]
9. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation. Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242 [TBL] [Abstract][Full Text] [Related]
10. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Vickers JA; Caulum MM; Henry CS Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411 [TBL] [Abstract][Full Text] [Related]
11. Patterned PDMS based cell array system: a novel method for fast cell array fabrication. Hsieh CH; Huang CJ; Huang YY Biomed Microdevices; 2010 Oct; 12(5):897-905. PubMed ID: 20577814 [TBL] [Abstract][Full Text] [Related]
12. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction. Choi MJ; Park JY; Cha KJ; Rhie JW; Cho DW; Kim DS Biofabrication; 2012 Dec; 4(4):045006. PubMed ID: 23075468 [TBL] [Abstract][Full Text] [Related]
13. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification. Yoon TO; Shin HJ; Jeoung SC; Park YI Opt Express; 2008 Aug; 16(17):12715-25. PubMed ID: 18711510 [TBL] [Abstract][Full Text] [Related]
14. Raman imaging spectroscopic characterization of modified poly(dimethylsiloxane) for micro total analysis systems applications. de Campos RP; Yoshida IV; Breitkreitz MC; Poppi RJ; Fracassi da Silva JA Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():67-71. PubMed ID: 22542689 [TBL] [Abstract][Full Text] [Related]
15. Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane. Alcántara JC; Cerda Zorrilla M; Cabriales L; Rossano LM; Hautefeuille M Beilstein J Nanotechnol; 2015; 6():744-8. PubMed ID: 25977844 [TBL] [Abstract][Full Text] [Related]
16. Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity. Li BB; Xiao YF; Yan MY; Clements WR; Gong Q Opt Lett; 2013 Jun; 38(11):1802-4. PubMed ID: 23722749 [TBL] [Abstract][Full Text] [Related]
17. Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane). Patrito N; McCague C; Norton PR; Petersen NO Langmuir; 2007 Jan; 23(2):715-9. PubMed ID: 17209625 [TBL] [Abstract][Full Text] [Related]
18. Micropatterning of cells on electron-irradiated poly(dimethylsiloxane) surface. Lee EJ; Hwang IT; Jung CH; Kwon HJ; Choi JH; Hur MG; Cho SO; Shin K J Biomed Nanotechnol; 2013 Mar; 9(3):461-6. PubMed ID: 23621002 [TBL] [Abstract][Full Text] [Related]
19. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption. Yu X; Xiao J; Dang F Langmuir; 2015 Jun; 31(21):5891-8. PubMed ID: 25966872 [TBL] [Abstract][Full Text] [Related]