BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24172686)

  • 1. Discovery of coumarin derivatives as fluorescence acceptors for intrinsic fluorescence resonance energy transfer of proteins.
    Kim JH; Sumranjit J; Kang HJ; Chung SJ
    Mol Biosyst; 2014 Jan; 10(1):30-3. PubMed ID: 24172686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous detection of caspase-3 using intrinsic fluorescence resonance energy transfer (iFRET).
    Kang HJ; Kim JH; Chung SJ
    Biosens Bioelectron; 2015 May; 67():413-8. PubMed ID: 25218199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques.
    Ghisaidoobe AB; Chung SJ
    Int J Mol Sci; 2014 Dec; 15(12):22518-38. PubMed ID: 25490136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor.
    Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M
    Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay.
    Hu S; Yang H; Cai R; Liu Z; Yang X
    Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous non-competitive bioaffinity assay based on fluorescence resonance energy transfer.
    Kokko T; Kokko L; Soukka T; Lövgren T
    Anal Chim Acta; 2007 Feb; 585(1):120-5. PubMed ID: 17386655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Förster-resonance-energy-transfer acceptors for tryptophan and tyrosine residues in native proteins as donors.
    zhang Y; Yang X; Liu L; Huang X; Pu J; Long G; Zhang L; Liu D; Xu B; Liao J; Liao F
    J Fluoresc; 2013 Jan; 23(1):147-57. PubMed ID: 23001429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Energy Transfer in a Genetically Engineered Polypeptide Results in Unanticipated Fluorescence Intensity.
    Seeley JP; Cotlet M; Eagleton AM; Higashiya S; Welch JT
    Chemistry; 2019 Jan; 25(4):961-965. PubMed ID: 30414202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin.
    Murakami H; Hohsaka T; Ashizuka Y; Hashimoto K; Sisido M
    Biomacromolecules; 2000; 1(1):118-25. PubMed ID: 11709833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores.
    Nikiforov TT; Beechem JM
    Anal Biochem; 2006 Oct; 357(1):68-76. PubMed ID: 16860286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Förster resonance energy transfer among a structural isomer of adenine and various Coumarins inside a nanosized reverse micelle.
    Ghatak C; Rao VG; Mandal S; Pramanik R; Sarkar S; Verma PK; Sarkar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():67-73. PubMed ID: 22245885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile characterization of the immobilization of streptavidin on magnetic submicron particles with a fluorescent probe of streptavidin.
    Long G; Zhang Y; Yang X; Pu J; Qin J; Liu L; Liao F
    Appl Spectrosc; 2013 Jun; 67(6):688-91. PubMed ID: 23735255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T
    Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation to investigate the FRET application in DNA hybridization systems.
    Liao JM; Wang YT; Chen CL
    Phys Chem Chem Phys; 2011 Jun; 13(21):10364-71. PubMed ID: 21537495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-evaluation of biotin-streptavidin conjugation in Förster resonance energy transfer applications.
    Saremi B; Wei MY; Liu Y; Cheng B; Yuan B
    J Biomed Opt; 2014 Aug; 19(8):085008. PubMed ID: 25162908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence energy transfer studies of human deoxycytidine kinase: role of cysteine 185 in the conformational changes that occur upon substrate binding.
    Mani RS; Usova EV; Cass CE; Eriksson S
    Biochemistry; 2006 Mar; 45(11):3534-41. PubMed ID: 16533034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous competitive assay of ligand affinities based on quenching fluorescence of tyrosine/tryptophan residues in a protein via Főrster-resonance-energy-transfer.
    Xie Y; Yang X; Pu J; Zhao Y; Zhang Y; Xie G; Zheng J; Yuan H; Liao F
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Nov; 77(4):869-76. PubMed ID: 20822950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A.
    Mekler VM; Averbakh AZ; Sudarikov AB; Kharitonova OV
    J Photochem Photobiol B; 1997 Oct; 40(3):278-87. PubMed ID: 9372617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of DNA hybridization using induced fluorescence resonance energy transfer.
    Howell WM
    Methods Mol Biol; 2006; 335():33-41. PubMed ID: 16785618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET or no FRET: a quantitative comparison.
    Berney C; Danuser G
    Biophys J; 2003 Jun; 84(6):3992-4010. PubMed ID: 12770904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.