BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24172686)

  • 21. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications.
    Liu X; Cole JM; Waddell PG; Lin TC; Radia J; Zeidler A
    J Phys Chem A; 2012 Jan; 116(1):727-37. PubMed ID: 22117623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Förster's resonance energy transfer between Fullerene C60 and Coumarin C440.
    Qaiser D; Khan MS; Singh RD; Khan ZH; Chawla S
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1065-8. PubMed ID: 20869302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discrimination between streptavidin and avidin with fluorescent affinity-based probes.
    Sun Q; Tian H; Qu H; Sun D; Chen Z; Duan L; Zhang W; Qian J
    Analyst; 2015 Jul; 140(13):4648-53. PubMed ID: 25985268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalized, Fluorescent, Conjugated Polymer Nanospheres for Protein Targeting via Förster Resonance Energy Transfer.
    Noh J; Jang G; Kim J; Kim D; Lee TS
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1756-9. PubMed ID: 26353727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved homo-FRET studies of biotin-streptavidin complexes.
    Andreoni A; Nardo L; Rigler R
    J Photochem Photobiol B; 2016 Sep; 162():656-662. PubMed ID: 27494295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QTR-FRET: Efficient background reduction technology in time-resolved förster resonance energy transfer assays.
    Syrjänpää M; Vuorinen E; Kulmala S; Wang Q; Härmä H; Kopra K
    Anal Chim Acta; 2019 Dec; 1092():93-101. PubMed ID: 31708038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward an alternative intrinsic probe for spectroscopic characterization of a protein.
    Goswami N; Makhal A; Pal SK
    J Phys Chem B; 2010 Nov; 114(46):15236-43. PubMed ID: 21028859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum dot-based multiplexed fluorescence resonance energy transfer.
    Clapp AR; Medintz IL; Uyeda HT; Fisher BR; Goldman ER; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2005 Dec; 127(51):18212-21. PubMed ID: 16366574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coumarin as a structural component of substrates and probes for serine and cysteine proteases.
    Breidenbach J; Bartz U; Gütschow M
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140445. PubMed ID: 32405284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extending Förster resonance energy transfer measurements beyond 100 Å using common organic fluorophores: enhanced transfer in the presence of multiple acceptors.
    Maliwal BP; Raut S; Fudala R; D'Auria S; Marzullo VM; Luini A; Gryczynski I; Gryczynski Z
    J Biomed Opt; 2012 Jan; 17(1):011006. PubMed ID: 22352640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance energy transfer in new fullerene-coumarin diads.
    Nascimento S; Brites MJ; Santos C; Gigante B; Fedorov A; Berberan-Santos MN
    J Fluoresc; 2006 Mar; 16(2):245-50. PubMed ID: 16583130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles.
    Oh E; Hong MY; Lee D; Nam SH; Yoon HC; Kim HS
    J Am Chem Soc; 2005 Mar; 127(10):3270-1. PubMed ID: 15755131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotin as acylating agent in the Friedel-Crafts reaction. Avidin affinity of biotinyl derivatives of ferrocene, ruthenocene and pyrene and fluorescence properties of 1-biotinylpyrene.
    Plażuk D; Zakrzewski J; Salmain M
    Org Biomol Chem; 2011 Jan; 9(2):408-17. PubMed ID: 20967359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection.
    Ying L; Xie N; Yang Y; Yang X; Zhou Q; Yin B; Huang J; Wang K
    Chem Commun (Camb); 2016 Jun; 52(50):7818-21. PubMed ID: 27241716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design consideration and probes for fluorescence resonance energy transfer studies.
    Sinev M; Landsmann P; Sineva E; Ittah V; Haas E
    Bioconjug Chem; 2000; 11(3):352-62. PubMed ID: 10821651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational design of biotinylated probes: fluorescent turn-on detection of (strept)avidin and bioimaging in cancer cells.
    Sun Q; Qian J; Tian H; Duan L; Zhang W
    Chem Commun (Camb); 2014 Aug; 50(62):8518-21. PubMed ID: 24948217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.
    Pham HH; Szent-Gyorgyi C; Brotherton WL; Schmidt BF; Zanotti KJ; Waggoner AS; Armitage BA
    Org Biomol Chem; 2015 Mar; 13(12):3699-710. PubMed ID: 25679477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualizing Hg2+ ions in living cells using a FRET-based fluorescent sensor.
    Zhou Y; Chu K; Zhen H; Fang Y; Yao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():197-202. PubMed ID: 23380148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.