BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24172769)

  • 1. Sesquiterpenyl indoles.
    Marcos IS; Moro RF; Costales I; Basabe P; Díez D
    Nat Prod Rep; 2013 Dec; 30(12):1509-26. PubMed ID: 24172769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach to prezizaane sesquiterpenes.
    Goeke A; Mertl D; Brunner G
    Chem Biodivers; 2004 Dec; 1(12):1949-56. PubMed ID: 17191831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity.
    Wilson MC; Moore BS
    Nat Prod Rep; 2012 Jan; 29(1):72-86. PubMed ID: 22124767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New synthetic methodology for the construction of 7-substituted farnesyl diphosphate analogs.
    Placzek AT; Gibbs RA
    Org Lett; 2011 Jul; 13(14):3576-9. PubMed ID: 21699139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies on biosynthetic carbocation rearrangements leading to sativene, cyclosativene, alpha-ylangene, and beta-ylangene.
    Lodewyk MW; Gutta P; Tantillo DJ
    J Org Chem; 2008 Sep; 73(17):6570-9. PubMed ID: 18681400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli.
    Harada H; Misawa N
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1021-31. PubMed ID: 19672590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of huperzine A by a fungal endophyte of Huperzia serrata furnished sesquiterpenoid-alkaloid hybrids.
    Ying YM; Shan WG; Zhan ZJ
    J Nat Prod; 2014 Sep; 77(9):2054-9. PubMed ID: 25222040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the synthesis of bisubstrate inhibitors of protein farnesyltransferase: Synthesis and biological evaluation of new farnesylpyrophosphate analogues.
    Duez S; Coudray L; Mouray E; Grellier P; Dubois J
    Bioorg Med Chem; 2010 Jan; 18(2):543-56. PubMed ID: 20036564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of imidazole-containing analogues of farnesyl pyrophosphate and evaluation of their biological activity on protein farnesyltransferase.
    Coudray L; de Figueiredo RM; Duez S; Cortial S; Dubois J
    J Enzyme Inhib Med Chem; 2009 Aug; 24(4):972-85. PubMed ID: 19555171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Biology Approaches to New Bisindoles.
    Alkhalaf LM; Du YL; Ryan KS
    Methods Enzymol; 2016; 575():21-37. PubMed ID: 27417923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b]indole.
    Ruiz-Sanchis P; Savina SA; Albericio F; Álvarez M
    Chemistry; 2011 Feb; 17(5):1388-408. PubMed ID: 21268138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents.
    Galliford CV; Scheidt KA
    Angew Chem Int Ed Engl; 2007; 46(46):8748-58. PubMed ID: 17943924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating Biphasic Biocatalysis through New Process Windows.
    Huynh F; Tailby M; Finniear A; Stephens K; Allemann RK; Wirth T
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16490-16495. PubMed ID: 32567753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sesquiterpene Cyclase BcBOT2 Promotes the Unprecedented Wagner-Meerwein Rearrangement of the Methoxy Group.
    Moeller M; Dhar D; Dräger G; Özbasi M; Struwe H; Wildhagen M; Davari MD; Beutel S; Kirschning A
    J Am Chem Soc; 2024 Jul; 146(26):17838-17846. PubMed ID: 38888422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic approaches to creating bioactive fungal metabolites: Pathway engineering and activation of secondary metabolism.
    Motoyama T; Osada H
    Bioorg Med Chem Lett; 2016 Dec; 26(24):5843-5850. PubMed ID: 27865702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein farnesyl transferase target selectivity is dependent upon peptide stimulated product release.
    Troutman JM; Andres DA; Spielmann HP
    Biochemistry; 2007 Oct; 46(40):11299-309. PubMed ID: 17877368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin.
    Jiang J; He X; Cane DE
    J Am Chem Soc; 2006 Jun; 128(25):8128-9. PubMed ID: 16787064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds.
    Pedras MSC; Okinyo-Owiti DP; Thoms K; Adio AM
    Phytochemistry; 2009 Jun; 70(9):1129-1138. PubMed ID: 19560792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on farnesyl cation cyclization: pathways to pentalenene.
    Gutta P; Tantillo DJ
    J Am Chem Soc; 2006 May; 128(18):6172-9. PubMed ID: 16669687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the reaction mechanism of aristolochene synthase with 12,13-difluorofarnesyl diphosphate.
    Yu F; Miller DJ; Allemann RK
    Chem Commun (Camb); 2007 Oct; (40):4155-7. PubMed ID: 17925960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.