These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24173097)

  • 21. The mechanism of ion conduction by valinomycin: analysis of charge pulse responses.
    Hladky SB; Leung JC; Fitzgerald WJ
    Biophys J; 1995 Nov; 69(5):1758-72. PubMed ID: 8580319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes.
    Sinha BA; Smejtek P
    J Membr Biol; 1983; 71(1-2):119-30. PubMed ID: 6687614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impedance analysis of phosphatidylcholine membranes modified with valinomycin.
    Naumowicz M; Kotynska J; Petelska A; Figaszewski Z
    Eur Biophys J; 2006 Feb; 35(3):239-46. PubMed ID: 16283290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of macrotetrolide-induced ion transport across lipid bilayer membranes.
    Benz R; Stark G
    Biochim Biophys Acta; 1975 Feb; 382(1):27-40. PubMed ID: 1122321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of a fast charge-pulse technique to study the effect of the dipolar substance 2,4-dichlorophenoxyacetic acid on the kinetics of valinomycin mediated K(+)-transport across monoolein membranes.
    Barth C; Bihler H; Wilhelm M; Stark G
    Biophys Chem; 1995 Apr; 54(2):127-36. PubMed ID: 7756564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Some effects of trinitrocresolate and valinomycin on Na and K transport across thin lipid bilayer membranes: a steady-state analysis with simultaneous tracer and electrical measurements.
    Ginsburg H; Tosteson MT; Tosteson DC
    J Membr Biol; 1978 Sep; 42(2):153-68. PubMed ID: 702517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure effects on mechanisms of charge transport across bilayer membranes.
    Aldridge BE; Bruner LJ
    Biochim Biophys Acta; 1985 Jul; 817(2):343-54. PubMed ID: 4016110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of peptide PV on the ionic permeability of lipid bilayer membranes.
    Ting-Beall HP; Tosteson MT; Gisin BF; Tosteson DC
    J Gen Physiol; 1974 Apr; 63(4):492-508. PubMed ID: 4820091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes. I. 2,4-dichlorophenoxyacetic acid.
    Awiszus R; Stark G
    Eur Biophys J; 1988; 15(5):299-310. PubMed ID: 3366096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of lipid structure on the kinetics of carrier-mediated ion transport.
    Benz R; Cros D; Janko K; Läuger P; Stark G
    Acta Physiol Scand Suppl; 1980; 481():47-52. PubMed ID: 6254329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of alkali cations through thin lipid membranes by (222)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Morel F; Lehn JM
    J Membr Biol; 1986; 89(3):251-67. PubMed ID: 3701842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.
    Feldberg SW; Kissel G
    J Membr Biol; 1975; 20(3-4):269-300. PubMed ID: 1173599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies of the conductance changes induced in bimolecular lipid membranes by alamethicin.
    Cherry RJ; Chapman D; Graham DE
    J Membr Biol; 1972 Dec; 7(1):325-44. PubMed ID: 24177515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of CO2/carbonic acid mediated proton flux through phosphatidylcholine vesicles as model membranes.
    Norris FA; Powell GL
    Biochim Biophys Acta; 1992 Oct; 1111(1):17-26. PubMed ID: 1327142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of potassium ions across planar lipid membranes by the antibiotic, grisorixin: I. The equilibrium state and self-diffusion K+ fluxes.
    Amblard G; Sandeaux R; Sandeaux J; Gavach C
    J Membr Biol; 1985; 88(1):15-23. PubMed ID: 4093953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes.
    Ciani S; Eisenman G; Szabo G
    J Membr Biol; 1969 Dec; 1(1):1-36. PubMed ID: 24174040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.
    Shlyonsky VG; Markin VS; Andreeva I; Pedersen SE; Simon SA; Benos DJ; Ismailov II
    Biochim Biophys Acta; 2006 Nov; 1758(11):1723-31. PubMed ID: 17069752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment.
    Stankowski S
    Biophys J; 1991 Aug; 60(2):341-51. PubMed ID: 1912277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.