These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24173097)

  • 41. Effect of ionizing radiation on artificial (planar) lipid membranes. II. The ion carriers valinomycin and nonactin as probes for radiation induced structural changes of the membrane.
    Strässle M; Stark G; Wilhelm M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Feb; 51(2):287-302. PubMed ID: 3493991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of double layer potentials in lipid monolayers and lipid bilayer membranes.
    Macdonald RC; Bangham AD
    J Membr Biol; 1972 Dec; 7(1):29-53. PubMed ID: 24177499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics of the iodine- and bromine-mediated transport of halide ions: demonstration of an interfacial complexation mechanism.
    Klotz KH; Benz R
    Biophys J; 1993 Dec; 65(6):2661-72. PubMed ID: 8312500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.
    Beck A; Li-Blatter X; Seelig A; Seelig J
    J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes.
    Knoll W; Stark G
    J Membr Biol; 1975-1976; 25(3-4):249-70. PubMed ID: 1235803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ion-Pairing Mechanism for the Valinomycin-Mediated Transport of Potassium Ions across Phospholipid Bilayers.
    Su Z; Leitch JJ; Sek S; Lipkowski J
    Langmuir; 2021 Aug; 37(31):9613-9621. PubMed ID: 34323494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding of Nisin Z to bilayer vesicles as determined with isothermal titration calorimetry.
    Breukink E; Ganz P; de Kruijff B; Seelig J
    Biochemistry; 2000 Aug; 39(33):10247-54. PubMed ID: 10956014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How Valinomycin Ionophores Enter and Transport K
    Su Z; Ran X; Leitch JJ; Schwan AL; Faragher R; Lipkowski J
    Langmuir; 2019 Dec; 35(51):16935-16943. PubMed ID: 31742409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers.
    Benz R; Fröhlich O; Läuger P
    Biochim Biophys Acta; 1977 Feb; 464(3):465-81. PubMed ID: 836821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protons decrease the single channel conductance of the sarcoplasmic reticulum K+ channel in neutral and negatively charged bilayers.
    Bell J
    Biophys J; 1985 Aug; 48(2):349-53. PubMed ID: 2413916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of the neuronal marker dye FM1-43 with lipid membranes. Thermodynamics and lipid ordering.
    Schote U; Seelig J
    Biochim Biophys Acta; 1998 Dec; 1415(1):135-46. PubMed ID: 9858712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement of surface potential and surface charge densities of sarcoplasmic reticulum membranes.
    Chiu VC; Mouring D; Watson BD; Haynes DH
    J Membr Biol; 1980 Sep; 56(2):121-32. PubMed ID: 7441722
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modulation by small hydrophobic molecules of valinomycin-mediated potassium transport across phospholipid vesicle membranes.
    Clement NR; Gould MJ
    Biochemistry; 1981 Mar; 20(6):1539-43. PubMed ID: 6261799
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of charged lipid vesicles with planar bilayer lipid membranes: detection by antibiotic membrane probes.
    Cohen JA; Moronne MM
    J Supramol Struct; 1976; 5(3):409-16. PubMed ID: 1024124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transport mechanism of hydrophobic ions through lipid bilayer membranes.
    Ketterer B; Neumcke B; Läuger P
    J Membr Biol; 1971 Sep; 5(3):225-45. PubMed ID: 24173128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phloretin-induced changes in ion transport across lipid bilayer membranes.
    Melnik E; Latorre R; Hall JE; Tosteson DC
    J Gen Physiol; 1977 Feb; 69(2):243-57. PubMed ID: 576427
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum.
    Bell JE; Miller C
    Biophys J; 1984 Jan; 45(1):279-87. PubMed ID: 6324908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A laser-temperature-jump method for the study of the rate of transfer of hydrophobic ions and carriers across the interface of thin lipid membranes.
    Brock W; Stark G; Jordan PC
    Biophys Chem; 1981 Aug; 13(4):329-48. PubMed ID: 17000171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The voltage-dependent step of the chloride transporter of Valonia utricularis encounters a Nernst-Planck and not an Eyring type of potential energy barrier.
    Wang J; Zimmermann U; Benz R
    Biophys J; 1993 Apr; 64(4):1004-16. PubMed ID: 19431881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.