BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24173354)

  • 21. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.
    Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2015 Oct; 309(8):F708-19. PubMed ID: 26180238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion channels and the regulation of myogenic tone in peripheral arterioles.
    Jackson WF
    Curr Top Membr; 2020; 85():19-58. PubMed ID: 32402640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systolic and mean blood pressures and afferent arteriolar myogenic response dynamics: a modeling approach.
    Williamson GA; Loutzenhiser R; Wang X; Griffin K; Bidani AK
    Am J Physiol Regul Integr Comp Physiol; 2008 Nov; 295(5):R1502-11. PubMed ID: 18685073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle.
    Morgado M; Cairrão E; Santos-Silva AJ; Verde I
    Cell Mol Life Sci; 2012 Jan; 69(2):247-66. PubMed ID: 21947498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical assessment of renal autoregulatory mechanisms.
    Sgouralis I; Layton AT
    Am J Physiol Renal Physiol; 2014 Jun; 306(11):F1357-71. PubMed ID: 24623150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arteriolar myogenic signalling mechanisms: Implications for local vascular function.
    Hill MA; Davis MJ; Meininger GA; Potocnik SJ; Murphy TV
    Clin Hemorheol Microcirc; 2006; 34(1-2):67-79. PubMed ID: 16543619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelin and prostaglandin H(2)/thromboxane A(2) enhance myogenic constriction in hypertension by increasing Ca(2+) sensitivity of arteriolar smooth muscle.
    Ungvari Z; Koller A
    Hypertension; 2000 Nov; 36(5):856-61. PubMed ID: 11082156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels.
    Loutzenhiser RD; Parker MJ
    Circ Res; 1994 May; 74(5):861-9. PubMed ID: 8156633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy.
    Pritchard HAT; Pires PW; Yamasaki E; Thakore P; Earley S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9745-E9752. PubMed ID: 30181262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systolic pressure and the myogenic response of the renal afferent arteriole.
    Loutzenhiser R; Bidani AK; Wang X
    Acta Physiol Scand; 2004 Aug; 181(4):407-13. PubMed ID: 15283752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Steady-state autoregulation of renal blood flow: a myogenic model.
    Lush DJ; Fray JC
    Am J Physiol; 1984 Jul; 247(1 Pt 2):R89-99. PubMed ID: 6331210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of troponin subunits in the rat renal afferent arteriole.
    Takeya K; Kathol I; Sutherland C; Wang X; Loutzenhiser R; Walsh MP
    IUBMB Life; 2019 Oct; 71(10):1475-1481. PubMed ID: 31046198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels.
    Hansen PB; Jensen BL; Andreasen D; Skøtt O
    Circ Res; 2001 Sep; 89(7):630-8. PubMed ID: 11577029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rho kinase activity governs arteriolar myogenic depolarization.
    Li Y; Brayden JE
    J Cereb Blood Flow Metab; 2017 Jan; 37(1):140-152. PubMed ID: 26661251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphatidylinositol 3-kinase modulates vascular smooth muscle contraction by calcium and myosin light chain phosphorylation-independent and -dependent pathways.
    Su X; Smolock EM; Marcel KN; Moreland RS
    Am J Physiol Heart Circ Physiol; 2004 Feb; 286(2):H657-66. PubMed ID: 14551055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rho kinase inhibitors reduce voltage-dependent Ca
    Guan Z; Baty JJ; Zhang S; Remedies CE; Inscho EW
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1132-F1141. PubMed ID: 31432708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.
    Knot HJ; Standen NB; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):211-21. PubMed ID: 9490841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.