BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 24173610)

  • 1. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.
    Yin Z; Sun Q; Zhang X; Jing H
    J Sci Food Agric; 2014 May; 94(7):1332-9. PubMed ID: 24173610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating changes that occur in chemical properties with the generation of antioxidant capacity in different sugar-amino acid Maillard reaction models.
    Chen XM; Kitts DD
    J Food Sci; 2011 Aug; 76(6):C831-7. PubMed ID: 21623789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.
    Kwak EJ; Lim SI
    Amino Acids; 2004 Aug; 27(1):85-90. PubMed ID: 15309575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant activity and chemical properties of crude and fractionated Maillard reaction products derived from four sugar-amino acid Maillard reaction model systems.
    Chen XM; Kitts DD
    Ann N Y Acad Sci; 2008 Apr; 1126():220-4. PubMed ID: 18448820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.
    Hong X; Meng J; Lu RR
    J Sci Food Agric; 2015 Jan; 95(1):66-71. PubMed ID: 24700168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional properties of chitosan-xylose Maillard reaction products and their application to semi-dried noodle.
    Zhu KX; Li J; Li M; Guo XN; Peng W; Zhou HM
    Carbohydr Polym; 2013 Feb; 92(2):1972-7. PubMed ID: 23399246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.
    Hou L; Xie J; Zhao J; Zhao M; Fan M; Xiao Q; Liang J; Chen F
    Food Chem; 2017 Oct; 232():135-144. PubMed ID: 28490056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant Activity In Vitro of N-(1-deoxy-α-d-xylulos-1-yl)-Phenylalanine: Comparison Among Maillard Reaction Intermediate, End-Products and Xylose-Phenylalanine.
    Cui H; Hayat K; Zhang X
    J Food Sci; 2019 May; 84(5):1060-1067. PubMed ID: 30942907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and antioxidant activity of water-soluble Maillard reaction products from interactions in a whey protein isolate and sugars system.
    Wang WQ; Bao YH; Chen Y
    Food Chem; 2013 Aug; 139(1-4):355-61. PubMed ID: 23561117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and yields of acetic acid in pentose-based Maillard reaction systems.
    Davidek T; Gouézec E; Devaud S; Blank I
    Ann N Y Acad Sci; 2008 Apr; 1126():241-3. PubMed ID: 18448822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Added l-Cysteine with 2-Threityl-thiazolidine-4-carboxylic Acid Derived from the Xylose-Cysteine System Affecting Its Maillard Browning.
    Zhai Y; Cui H; Hayat K; Hussain S; Tahir MU; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2019 Aug; 67(31):8632-8640. PubMed ID: 31309828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of red pigments formed in a D-xylose-glycine reaction system.
    Shirahashi Y; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2009 Oct; 73(10):2287-92. PubMed ID: 19809196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Browning of Maillard reaction systems containing xylose and 4-hydroxy-5-methyl-3(2H)-furanone.
    Nakamura M; Mikami Y; Noda K; Murata M
    Biosci Biotechnol Biochem; 2021 Feb; 85(2):401-410. PubMed ID: 33604624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor.
    Cao C; Xie J; Hou L; Zhao J; Chen F; Xiao Q; Zhao M; Fan M
    Food Res Int; 2017 Sep; 99(Pt 1):444-453. PubMed ID: 28784504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry and some biological effects of model melanoidins and pigments as Maillard intermediates.
    Hayase F; Usui T; Watanabe H
    Mol Nutr Food Res; 2006 Dec; 50(12):1171-9. PubMed ID: 17131457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation mechanism of cross-linking Maillard compounds in peptide-xylose systems.
    Liu P; Zhang X; Huang M; Song S; Nsor-Atindana J
    J Pept Sci; 2012 Oct; 18(10):626-34. PubMed ID: 22933421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the effect of tetraborate ions in the generation of colored products in thermally processed glycine-carbohydrate solutions.
    Rizzi GP
    J Agric Food Chem; 2007 Mar; 55(5):2016-9. PubMed ID: 17288450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.
    Zeng Y; Zhang X; Guan Y; Sun Y
    J Food Sci; 2011 Apr; 76(3):C398-403. PubMed ID: 21535806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of xylose on the molecular and particle size distribution of peanut hydrolysate in Maillard reaction system.
    Su G; Cui C; Ren J; Yang B; Zhao M
    J Sci Food Agric; 2011 Oct; 91(13):2457-62. PubMed ID: 21674506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.